Covering: up to 2018Pleuromutilins are a clinically validated class of antibiotics derived from the fungal diterpene (+)-pleuromutilin (1). Pleuromutilins inhibit bacterial protein synthesis by binding to the peptidyl transferase center (PTC) of the ribosome. In this review we summarize the biosynthesis and recent total syntheses of (+)-pleuromutilin (1). We review the mode of interaction of pleuromutilins with the bacterial ribosome, which involves binding of the C14 extension and the tricyclic core to the P and A sites of the PTC, respectively. We provide an overview of existing clinical agents, and discuss the three primary modes of bacterial resistance (mutations in ribosomal protein L3, Cfr methylation, and efflux). Finally we collect structure-activity relationships from publicly available reports, and close with some forward looking statements regarding future development.
Antibiotics derived from the diterpene fungal metabolite (+)-pleuromutilin (1) are useful agents for the treatment Gram-positive infections in humans and farm animals. Pleuromutilins elicit slow rates of resistance development and minimal cross-resistance with existing antibiotics. Despite efforts aimed at producing new derivatives by semisynthesis, modification of the tricyclic core is underexplored, in part due to a limited number of functional group handles. Herein, we report methods to selectively functionalize the methyl groups of (+)-pleuromutilin (1) by hydroxyl-directed iridium-catalyzed C-H silylation, followed by Tamao-Fleming oxidation. These reactions provided access to C16, C17, and C18 monooxidized products, as well as C15/C16 and C17/C18 dioxidized products. Four new functionalized derivatives were prepared from the protected C17 oxidation product. C6 carboxylic acid, aldehyde, and normethyl derivatives were prepared from the C16 oxidation product. Many of these sequences were executed on gram scales. The efficiency and practicality of these routes provides an easy method to rapidly interrogate structure-activity relationships that were previously beyond reach. This study will inform the design of fully synthetic approaches to novel pleuromutilins and underscores the power of the hydroxyl-directed iridium-catalyzed C-H silylation reaction.
Biocatalytic process-development continues to advance toward discovering alternative transformation reactions to synthesize fine chemicals. Here, a 5-methylidene-3,5dihydro-4H-imidazol-4-one (MIO)-dependent phenylalanine aminomutase from Taxus canadensis (TcPAM) was repurposed to irreversibly biocatalyze an intermolecular amine transfer reaction that converted ring-substituted transcinnamate epoxide racemates to their corresponding arylserines. From among 12 substrates, the aminomutase ringopened 3′-Cl-cinnamate epoxide to 3′-Cl-phenylserine 140 times faster than it opened the 4′-Cl-isomer, which was turned over slowest among all epoxides tested. GC/MS analysis of chiral auxiliary derivatives of the biocatalyzed phenylserine analogues showed that the TcPAM-transamination reaction opened the epoxides enantio-and diastereoselectively. Each product mixture contained (2S)+(2R)-anti (erythro) and ( 2S)+(2R)-syn (threo) pairs with the anti-isomers predominating (∼90:10 dr). Integrating the vicinal proton signals in the 1 H NMR spectrum of the enzyme-catalyzed phenylserines and calculating the chemical shift difference (Δδ) between the anti and syn proton signals confirmed the diastereomeric ratios and relative stereochemistries. Application of a (2S)-threonine aldolase from E. coli further established the absolute stereochemistry of the chiral derivatives of the diastereomeric enzymatically derived products. The 2R:2S ratio for the biocatalyzed anti-isomers was highest (88:12) for 3′-NO 2 -phenylserine and lowest (66:34) for 4′-Fphenylserine. This showed that the stereospecificity of TcPAM is in part directed by the substituent-type on the cinnamate epoxide analogue. The catalyst also converted each cinnamate epoxide analogue to its corresponding isoserine, highlighting a biocatalytic route to arylisoserines, which play a key role in building the pharmacophore seen in anticancer and protease inhibitor drugs.
In the version of this article initially published, there was an error Figure 2c. The structure of compound 19 was incorrectly depicted. In compound 19, the carbon labelled 14 is part of a nitrile group, rather than an aldehyde. This structure has been corrected in the HTML and PDF versions of the article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.