During range-advance, individuals on the expanding edge of the population face a unique selective environment. In this study, we use a three-trait trade-off model to explore the evolution of dispersal, reproduction and competitive ability during range expansion. We show that range expansion greatly affects the evolution of life-history traits due to differing selection pressures at the front of the range compared with those found in stationary and core populations. During range expansion, dispersal and reproduction are selected for on the expanding population front, whereas traits associated with fitness at equilibrium density (competitive ability) show dramatic declines. Additionally, we demonstrate that the presence of a competing species can considerably reduce the extent to which dispersal is selected upwards at an expanding front. These findings have important implications for understanding both the rate of spread of invasive species and the range-shifting dynamics of native species in response to climate change.
There is an increasing recognition that evolutionary processes play a key role in determining the dynamics of range expansion. Recent work demonstrates that neutral mutations arising near the edge of a range expansion sometimes surf on the expanding front leading them rather than that leads to reach much greater spatial distribution and frequency than expected in stationary populations. Here, we extend this work and examine the surfing behavior of nonneutral mutations. Using an individual-based coupled-map lattice model, we confirm that, regardless of its fitness effects, the probability of survival of a new mutation depends strongly upon where it arises in relation to the expanding wave front. We demonstrate that the surfing effect can lead to deleterious mutations reaching high densities at an expanding front, even when they have substantial negative effects on fitness. Additionally, we highlight that this surfing phenomenon can occur for mutations that impact reproductive rate (i.e., number of offspring produced) as well as mutations that modify juvenile competitive ability. We suggest that these effects are likely to have important consequences for rates of spread and the evolution of spatially expanding populations.
Dynamic species' ranges, those that are either invasive or shifting in response to environmental change, are the focus of much recent interest in ecology, evolution, and genetics. Understanding how range expansions can shape evolutionary trajectories requires the consideration of nonneutral variability and genetic architecture, yet the majority of empirical and theoretical work to date has explored patterns of neutral variability. Here we use forward computer simulations of population growth, dispersal, and mutation to explore how range-shifting dynamics can influence evolution on rugged fitness landscapes. We employ a two-locus model, incorporating sign epistasis, and find that there is an increased likelihood of fitness peak shifts during a period of range expansion. Maladapted valley genotypes can accumulate at an expanding range front through a phenomenon called mutation surfing, which increases the likelihood that a mutation leading to a higher peak will occur. Our results indicate that most peak shifts occur close to the expanding front. We also demonstrate that periods of range shifting are especially important for peak shifting in species with narrow geographic distributions. Our results imply that trajectories on rugged fitness landscapes can be modified substantially when ranges are dynamic.
A growing body of empirical evidence demonstrates that at an expanding front, there can be strong selection for greater dispersal propensity, whereas recent theory indicates that mutations occurring towards the front of a spatially expanding population can sometimes ‘surf’ to high frequency and spatial extent. Here, we consider the potential interplay between these two processes: what role may mutation surfing play in determining the course of dispersal evolution and how might dispersal evolution itself influence mutation surfing? Using an individual‐based coupled‐map lattice model, we first run simulations to determine the fate of dispersal mutants that occur at an expanding front. Our results highlight that mutants that have a slightly higher dispersal propensity than the wild type always have a higher survival probability than those mutants with a dispersal propensity lower than, or very similar to, the wild type. However, it is not always the case that mutants with very high dispersal propensity have the greatest survival probability. When dispersal mortality is high, mutants of intermediate dispersal survive most often. Interestingly, the rate of dispersal that ultimately evolves at an expanding front is often substantially higher than that which confers a novel mutant with the greatest probability of survival. Second, we run a model in which we allow dispersal to evolve over the course of a range expansion and ask how the fate of a neutral or nonneutral mutant depends upon when and where during the expansion it arises. These simulations highlight that the success of a neutral mutant depends upon the dispersal genotypes that it is associated with. An important consequence of this is that novel mutants that arise at the front of an expansion, and survive, typically end up being associated with more dispersive genotypes than the wild type. These results offer some new insights into causes and the consequences of dispersal evolution during range expansions, and the methodology we have employed can be readily extended to explore the evolutionary dynamics of other life history characteristics.
The interplay between the spatial dynamics of range expansion and evolutionary processes is receiving considerable attention. Recent theory has demonstrated that mutations occurring towards the front of a spatially expanding population can sometimes 'surf' to high frequency and spatial extent. Here, we extend this work to consider how the fate of a novel mutation is influenced by where and when it occurs. Specifically, we are interested in establishing how the origin of a mutation relative to a habitat edge influences its dynamics, and in understanding how this is mediated by the behaviour of individuals at those boundaries. Using a coupled-map lattice model, we demonstrate that the survival probability, abundance and spatial extent of surviving mutants can depend on their origin. An edge effect is often observed and can be quite different both qualitatively and quantitatively depending on the behavioural rules assumed. Mutations, especially those that are deleterious, that arise at a habitat edge with reflective boundary conditions can be many more times likely to survive for substantial periods of time than those that arise away from the edge. Conversely, with absorbing boundary conditions, their survival is greater when they arise well away from the edge. Our results clearly illustrate that landscape structure, habitat edges and boundary conditions have a considerable influence on the likely fate of mutations that occur during a period of range expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.