Traumatic brain injury (TBI) is a complex disease to study due to the multifactorial injury cascades occurring after the initial blow to the head. One of the most vital players in this secondary injury cascade, and therapeutic target of interest, is the mitochondrion. Mitochondria are important for the generation of cellular energy, regulation of cell death, and modulation of intracellular calcium which leaves these “powerhouses” especially susceptible to damage and dysfunction following traumatic brain injury. Most of the existing studies involving mitochondrial dysfunction after TBI have been performed in male rodent models, leaving a gap in knowledge on these same outcomes in females. This mini-review intends to highlight the available data on mitochondrial dysfunction in male and female rodents after controlled cortical impact (CCI) as a common model of TBI.
Pioglitazone interacts through the mitochondrial protein mitoNEET to improve brain bioenergetics following traumatic brain injury. To provide broader evidence regarding the therapeutic effects of pioglitazone after traumatic brain injury, the current study is focused on immediate and delayed therapy in a model of mild brain contusion. To assess pioglitazone therapy on mitochondrial bioenergetics in cortex and hippocampus, we use a technique to isolate sub-populations of total, glia-enriched, and synaptic mitochondria. Pioglitazone treatment was initially administered at either 0.25 hr, 3 hr, 12 hr, or 24 hr following mild controlled cortical impact. At 48 hr post-injury, ipsilateral cortex and hippocampus were dissected and mitochondrial fractions were isolated. Maximal mitochondrial respiration injury-induced deficits were observed in total and synaptic fractions and 0.25 hr pioglitazone treatment following mild controlled cortical impact was able to restore respiration to sham levels. While there are no injury-induced deficits in hippocampal fractions, we do find that 3 hr pioglitazone treatment after mild controlled cortical impact can significantly increase maximal mitochondrial bioenergetics compared to vehicle-treated mild controlled cortical impact group. However, delayed pioglitazone treatment initiated at either 3 hr or 24 hr after mild brain contusion does not improve spared cortical tissue. We demonstrate that synaptic mitochondrial deficits following mild focal brain contusion can be restored with early initiation of pioglitazone treatment. Further investigation is needed to determine functional improvements with pioglitazone beyond that of overt cortical tissue sparing following mild contusion traumatic brain injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.