As the highest percentage of V̇O2max at which steady state conditions can be achieved, a person’s critical power (PCRIT) strongly influences the metabolic strain of a given exercise. In this study we demonstrate that training-induced changes in endurance are more strongly related to the intensity of an exercise training program, relative to PCRIT than relative to V̇o2max. Thus, exercise may be more homogenously and effectively prescribed in relation to PCRIT than traditional factors like V̇o2max.
Purpose: To investigate the effect of the menstrual cycle (MC) on exercise performance across the power-duration relationship (PDR). We hypothesized females would exhibit greater variability in the PDR across the MC than males across a similar timespan, with critical power (CP) and Work-prime (W') being lower during the early follicular phase than the late follicular and mid-luteal phases. Methods: Seven eumenorrheic, endurance-trained female adults performed multiple constant-load-to-task-failure and maximum-power tests at three time points across the MC (early follicular, late follicular, mid-luteal phases). Ten endurance-trained male adults performed the same tests approximately 10 days apart. Results: No differences across the PDR were observed between MC phases (CP: 186.74 ± 31.00 W, P = 0.955, CV = 0.81 ± 0.65 %) (W': 7,961.81 ± 2,537.68 J, P = 0.476, CV = 10.48 ± 3.06 %). CP was similar for male and female subjects (11.82 ± 1.42 W • kg−1 vs. 11.56 ± 1.51 W • kg−1, respectively) when controlling for leg lean mass. However, W' was larger (P = 0.047) for male subjects (617.28 ± 130.10 J • kg−1) than female subjects (490.03 ± 136.70 J • kg−1) when controlling for leg lean mass. Conclusion: MC phase does not need to be controlled when conducting aerobic endurance performance research on eumenorrheic female subjects without menstrual dysfunction. Nevertheless, several sex differences in the power-duration relationship exist, even after normalizing for body composition. Therefore, previous studies describing the physiology of exercise performance in male subjects may not perfectly describe that of female subjects.
Background and Objectives: Muscle blood flow is impeded during resistance exercise contractions, but immediately increases during recovery. The purpose of this study was to determine the impact of brief bouts of rest (2 s) between repetitions of resistance exercise on muscle blood flow and exercise tolerance. Materials and Methods: Ten healthy young adults performed single-leg knee extension resistance exercises with no rest between repetitions (i.e., continuous) and with 2 s of rest between each repetition (i.e., intermittent). Exercise tolerance was measured as the maximal power that could be sustained for 3 min (PSUS) and as the maximum number of repetitions (Reps80%) that could be performed at 80% one-repetition maximum (1RM). The leg blood flow, muscle oxygenation of the vastus lateralis and mean arterial pressure (MAP) were measured during various exercise trials. Alpha was set to p ≤ 0.05. Results: Leg blood flow was significantly greater, while vascular resistance and MAP were significantly less during intermittent compared with continuous resistance exercise at the same power outputs (p < 0.01). PSUS was significantly greater during intermittent than continuous resistance exercise (29.5 ± 2.1 vs. 21.7 ± 1.2 W, p = 0.01). Reps80% was also significantly greater during intermittent compared with continuous resistance exercise (26.5 ± 5.3 vs. 16.8 ± 2.1 repetitions, respectively; p = 0.02), potentially due to increased leg blood flow and muscle oxygen saturation during intermittent resistance exercise (p < 0.05). Conclusions: In conclusion, a brief rest between repetitions of resistance exercise effectively decreased vascular resistance, increased blood flow to the exercising muscle, and increased exercise tolerance to resistance exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.