Molecular targeting of nanoparticle drug carriers promises maximized therapeutic impact to sites of disease or injury with minimized systemic effects. Precise targeting demands addressing to subcellular features. Caveolae, invaginations in cell membranes implicated in transcytosis and inflammatory signaling, are appealing subcellular targets. Caveolar geometry has been reported to impose a ≈50 nm size cutoff on nanocarrier access to plasmalemma vesicle associated protein (PLVAP), a marker found in caveolae in the lungs. The use of deformable nanocarriers to overcome that size cutoff is explored in this study. Lysozyme-dextran nanogels (NGs) are synthesized with ≈150 or ≈300 nm mean diameter. Atomic force microscopy indicates the NGs deform on complementary surfaces. Quartz crystal microbalance data indicate that NGs form softer monolayers (≈60 kPa) than polystyrene particles (≈8 MPa). NGs deform during flow through microfluidic channels, and modeling of NG extrusion through porous filters yields sieving diameters less than 25 nm for NGs with 150 and 300 nm hydrodynamic diameters. NGs of 150 and 300 nm diameter target PLVAP in mouse lungs while counterpart rigid polystyrene particles do not. The data in this study indicate a role for mechanical deformability in targeting large high-payload drug-delivery vehicles to sterically obscured targets like PLVAP.
Deformability of injectable nanocarriers impacts rheological behavior, drug loading, and affinity target adhesion. Here, we present atomic force microscopy (AFM) and spectroscopy measurements of nanocarrier Young’s moduli, tune the moduli of deformable nanocarriers with cross-linkers, and demonstrate vascular targeting behavior that correlates with Young’s modulus. Homobifunctional cross-linkers were introduced into lysozyme-dextran nanogels (NGs). Single particle-scale AFM measurements determined NG moduli varying from ∼50–150 kPa for unmodified NGs or NGs with a short hydrophilic cross-linker (2,2′-(ethylenedioxy)bis(ethylamine), EOD) to ∼350 kPa for NGs modified with a longer hydrophilic cross-linker (4,9-dioxa-1,12-dodecanediamine, DODD) to ∼10 MPa for NGs modified with a longer hydrophobic cross-linker (1,12-diaminododecane, DAD). Cross-linked NGs were conjugated to antibodies for plasmalemma vesicle associated protein (PLVAP), a caveolar endothelial marker that cannot be accessed by rigid particles larger than ∼100 nm. In previous work, 150 nm NGs effectively targeted PLVAP, where rigid particles of similar diameter did not. EOD-modified NGs targeted PLVAP less effectively than unmodified NGs, but more effectively than DODD or DAD modified NGs, which both yielded low levels of targeting, resembling results previously obtained with polystyrene particles. Cross-linked NGs were also conjugated to antibodies against intracellular adhesion molecule-1 (ICAM-1), an endothelial marker accessible to large rigid particles. Cross-linked NGs and unmodified NGs targeted uniformly to ICAM-1. We thus demonstrate cross-linker modification of NGs, AFM determination of NG mechanical properties varying with cross-linker, and tuning of specific sterically constrained vascular targeting behavior in correlation with cross-linker-modified NG mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.