The cooperation between humans and robots is becoming increasingly important in our society. Consequently, there is a growing interest in the development of models that can enhance and enrich the interaction between humans and robots. A key challenge in the Human-Robot Interaction (HRI) field is to provide robots with cognitive and affective capabilities, by developing architectures that let them establish empathetic relationships with users. Over the last several years, multiple models were proposed to face this open-challenge. This work provides a survey of the most relevant attempts/works. In details, it offers an overview of the architectures present in literature focusing on three specific aspects of HRI: the development of adaptive behavioral models, the design of cognitive architectures, and the ability to establish empathy with the user. The research was conducted within two databases: Scopus and Web of Science. Accurate exclusion criteria were applied to screen the 4916 articles found. At the end, 56 articles were selected. For each work, an evaluation of the model is made. Pros and cons of each work are detailed by analyzing the aspects that can be improved to establish an enjoyable interaction between robots and users.
As the elderly population grows, there is a need for caregivers, which may become unsustainable for society. In this situation, the demand for automated help increases. One of the solutions is service robotics, in which robots have automation and show significant promise in working with people. In particular, household settings and aged people’s homes will need these robots to perform daily activities. Clothing manipulation is a daily activity and represents a challenging area for a robot. The detection and classification are key points for the manipulation of clothes. For this reason, in this paper, we proposed to study fashion image classification with four different neural network models to improve apparel image classification accuracy on the Fashion-MNIST dataset. The network models are tested with the highest accuracy with a Fashion-Product dataset and a customized dataset. The results show that one of our models, the Multiple Convolutional Neural Network including 15 convolutional layers (MCNN15), boosted the state of art accuracy, and it obtained a classification accuracy of 94.04% on the Fashion-MNIST dataset with respect to the literature. Moreover, MCNN15, with the Fashion-Product dataset and the household dataset, obtained 60% and 40% accuracy, respectively.
The cooperation between humans and robots is becoming increasingly important in our society. Consequently, there is a growing interest in the development of models that can enhance the interaction between humans and robots. A key challenge in the Human-Robot Interaction (HRI) field is to provide robots with cognitive and affective capabilities, developing architectures that let them establish empathetic relationships with users. Several models have been proposed in recent years to solve this open-challenge. This work provides a survey of the most relevant attempts/works. In details, it offers an overview of the architectures present in literature focusing on three specific aspects of HRI: the development of adaptive behavioural models, the design of cognitive architectures, and the ability to establish empathy with the user. The research was conducted within two databases: Scopus and Web of Science. Accurate exclusion criteria were applied to screen the 1007 articles found (at the end 30 articles were selected). For each work, an evaluation of the model is made. Pros and cons of each work are detailed by analysing the aspects that can be improved so that an enjoyable interaction between robots and users can be established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.