This review summarizes the pathological features of diabetic retinopathy. The lesions occurring in the diabetic retina have been described over many decades using descriptive and experimental approaches based on clinical studies on patients, human post-mortem material, animal models and various in vitro systems. We have also accumulated a wealth of knowledge about basic molecular mechanisms and key pathogenic processes that drive these abnormalities in diabetic retina. Despite these advances, there are still limited therapeutic options for diabetic retinopathy with those currently available only addressing late-stage disease. With a particular focus on the earlier stages of diabetes, there is growing appreciation the complex neuronal, glial and microvascular abnormalities which progressively disrupt retinal function. This is especially true from the perspective of the neurovascular unit during health and disease. Based on a strong appreciation of cellular and molecular pathology that underpins diabetic retinopathy, further advances are anticipated as we drive towards development of efficacious therapeutic options that can address all stages of disease.
This study reports the proteomic profile of tears in ocular GvHD for the first time and identifies a number of unique differentially expressed proteins. Further studies with a higher number of participants are necessary to confirm these results and to evaluate the reliability of these expression patterns in longitudinal studies.
Our objective was to profile genetic pathways whose differential expression correlates with maturation of visual function in zebrafish. Bioinformatic analysis of transcriptomic data revealed Jak-Stat signalling as the pathway most enriched in the eye, as visual function develops. Real-time PCR, western blotting, immunohistochemistry and in situ hybridization data confirm that multiple Jak-Stat pathway genes are up-regulated in the zebrafish eye between 3–5 days post-fertilisation, times associated with significant maturation of vision. One of the most up-regulated Jak-Stat genes is the proto-oncogene Pim1 kinase, previously associated with haematological malignancies and cancer. Loss of function experiments using Pim1 morpholinos or Pim1 inhibitors result in significant diminishment of visual behaviour and function. In summary, we have identified that enhanced expression of Jak-Stat pathway genes correlates with maturation of visual function and that the Pim1 oncogene is required for normal visual function.
BackgroundGenetic alterations in human topoisomerase II alpha (TOP2A) are linked to cancer susceptibility. TOP2A decatenates chromosomes and thus is necessary for multiple aspects of cell division including DNA replication, chromosome condensation and segregation. Topoisomerase II alpha is also required for embryonic development in mammals, as mouse Top2a knockouts result in embryonic lethality as early as the 4-8 cell stage. The purpose of this study was to determine whether the extended developmental capability of zebrafish top2a mutants arises from maternal expression of top2a or compensation from its top2b paralogue.ResultsHere, we describe bloody minded (blm), a novel mutant of zebrafish top2a. In contrast to mouse Top2a nulls, zebrafish top2a mutants survive to larval stages (4-5 day post fertilization). Developmental analyses demonstrate abundant expression of maternal top2a but not top2b. Inhibition or poisoning of maternal topoisomerase II delays embryonic development by extending the cell cycle M-phase. Zygotic top2a and top2b are co-expressed in the zebrafish CNS, but endogenous or ectopic top2b RNA appear unable to prevent the blm phenotype.ConclusionsWe conclude that maternal top2a enables zebrafish development before the mid-zygotic transition (MZT) and that zebrafish top2a and top2b are not functionally redundant during development after activation of the zygotic genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.