We introduce the concept of alternate-edge-colourings for maps and study highly symmetric examples of such maps. Edge-biregular maps of type (k, l) occur as smooth normal quotients of a particular index two subgroup of $$T_{k,l}$$ T k , l , the full triangle group describing regular plane (k, l)-tessellations. The resulting colour-preserving automorphism groups can be generated by four involutions. We explore special cases when the usual four generators are not distinct involutions, with constructions relating these maps to fully regular maps. We classify edge-biregular maps when the supporting surface has non-negative Euler characteristic, and edge-biregular maps on arbitrary surfaces when the colour-preserving automorphism group is isomorphic to a dihedral group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.