Within communities, organisms potentially self‐organize through endogenous processes that create nonrandom spatial structure as they interact with one another or modify the abiotic environment. In contrast, exogenous processes such as environmental heterogeneity or variable immigration are thought to be dominant processes controlling these spatial patterns. Although both endogenous and exogenous processes likely occur, their relative importance is still largely unknown because of limited analytical tools and the lack of experimental evidence, particularly those that address exogenous sources of environmental heterogeneity. Here, we used a soil heterogeneity experiment to examine the relative effect of endogenous and exogenous processes on plant spatial structure after five years of community assembly. Soil heterogeneity was manipulated by splitting the vertical soil profile into three soil‐types that were randomly assigned to 40 × 40 cm patches within 2.4 × 2.4 m plots. Homogeneous plots were created by mixing all soils before filling each patch. Thirty‐four grassland species were then sown into all plots and allowed to grow for five years after which the location of all plants was mapped using a 5 × 5 cm grid. Results from point‐pattern spatial analysis indicated that, even in the absence of soil heterogeneity and with initial seed arrival, spatial structure was primarily generated by endogenous processes. Although soil heterogeneity increased species aggregation at certain scales, most of the spatial structure was created by endogenous processes. These results suggest that endogenous processes may be more important than expected for generating spatial structure and can develop much faster than anticipated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.