Highlights d Few naturally acquired mutations are required for the function of HIV bnAb DH270.6 d Acquired improbable mutations are critical for neutralization d Immunogens to elicit lineage Abs containing key DH270.6 mutations are identified d More probable evolution pathways to induce DH270.6-like bnAbs likely exist
The non-classical class Ib molecule human leukocyte antigen E (HLA-E) has limited polymorphism and can bind HLA class Ia leader peptides (VL9). HLA-E-VL9 complexes interact with the natural killer (NK) cell receptors NKG2A-C/CD94 and regulate NK cell-mediated cytotoxicity. Here we report the isolation of 3H4, a murine HLA-E-VL9-specific IgM antibody that enhances killing of HLA-E-VL9-expressing cells by an NKG2A+ NK cell line. Structural analysis reveal that 3H4 acts by preventing CD94/NKG2A docking on HLA-E-VL9. Upon in vitro maturation, an affinity-optimized IgG form of 3H4 showes enhanced NK killing of HLA-E-VL9-expressing cells. HLA-E-VL9-specific IgM antibodies similar in function to 3H4 are also isolated from naïve B cells of cytomegalovirus (CMV)-negative, healthy humans. Thus, HLA-E-VL9-targeting mouse and human antibodies isolated from the naïve B cell antibody pool have the capacity to enhance NK cell cytotoxicity.
SummaryElicitation of broadly neutralizing antibodies (bnAbs) by an HIV vaccine will involve priming the immune system to activate antibody precursors, followed by boosting immunizations to select for antibodies with functional features required for neutralization breadth. The higher the number of mutations necessary for function, the more convoluted are the antibody developmental pathways. HIV bnAbs acquire a large number of somatic mutations, but not all mutations are functionally important. Here we identified a minimal subset of mutations sufficient for the function of to the naturally occurring, more mutated V3-glycan bnAb DH270.6. Using antibody library screening, candidate envelope immunogens that interacted with DH270.6-like antibodies containing this set of key mutations were identified and selected in vitro. Our results demonstrate that less complex B cell evolutionary pathways than those naturally observed exist for the induction of HIV bnAbs by vaccination, and establish rational approaches to identify boosting sequential envelope candidate immunogens.
B cell lineages that are the current focus of vaccine development efforts against HIV-1, influenza or coronaviruses, often contain rare features, such as long heavy chain complementarity determining regions (CDRH3) loops. These unusual characteristics may limit the number of available B cells in the natural immunoglobulin repertoire that can respond to pathogen vaccinations. To measure the ability of a given immunogen to engage naturally occurring B cell receptors of interest, here we describe a mixed experimental and bioinformatic approach for determining the frequency and sequence of CDRH3 loops in the immune repertoire that can be recognized by a vaccine candidate. By combining deep mutational scanning and B cell receptor database analysis, CDRH3 loops were found that can be engaged by two HIV-1 germline-targeting immunogens, thus illustrating how the methods described here can be used to evaluate candidate immunogens based on their ability to engage diverse B cell lineage precursors.
Elicitation of broadly neutralizing antibodies (bnAbs) by an HIV vaccine will involve priming the immune system to activate antibody precursors, followed by boosting immunizations to select for antibodies with functional features required for neutralization breadth. The higher the number of acquired mutations necessary for function, the more convoluted are the antibody developmental pathways. HIV bnAbs acquire a large number of somatic mutations, but not all mutations are functionally important. In this study, we identify a minimal subset of mutations sufficient for the function of the naturally occurring V3-glycan bnAb DH270.6. Using antibody library screening, candidate envelope immunogens that interact with DH270.6-like antibodies containing this set of key mutations are identified and selected in vitro. Our results demonstrate that less complex B cell evolutionary pathways than those naturally observed exist for the induction of HIV bnAbs by vaccination, and they establish rational approaches to identify boosting candidate immunogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.