ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
The search for a low-cost process for the valorization of linear α-olefins combining high productivity and high selectivity is a longstanding goal for chemists. Herein, we report a soluble ruthenium olefin metathesis catalyst that performs the conversion of linear α-olefins to longer internal linear olefins with high selectivity (>99%) under neat conditions at low loadings (50 ppm) and without the need of expensive additives. This robust catalytic process allowed us to efficiently and selectively re-equilibrate the naphtha fraction (C5–C8) of a Fischer–Tropsch feed derived from non-petroleum resources to a higher-value product range (C9–C14), useful as detergent and plasticizer precursorsThis work was supported by the European Community through the seventh framework program (CP-FP 211468-2 EUMET, grant to M.R., L.F., and E.B.). M.M. thanks the CNRS, the ENSCR, Rennes Métropole, and the Région-Bretagne for their financial support. A.P. thanks the Spanish MINECO for project CTQ2014- 59832-JIN, and L.C. acknowledges funding from the King Abdullah University of Science and Technology (KAUST
A ruthenium catalyst for Z-selective olefin metathesis has been synthesized from a readily accessible N-heterocyclic carbene (NHC) ligand that is prepared thanks to an efficient, practical and scalable multicomponent synthesis. The desired ruthenium complex with cyclometalated NHC ligand is obtained by means of selective C(sp 3)-H activation at the adamantyl fragment and X-ray diffraction analysis unambiguously confirmed the structure of the precatalyst. The catalyst demonstrated attractive catalytic performance in self-and cross-metathesis at low catalyst loading to afford the desired internal olefins with high conversion and very high Z-selectivity (up to >99%). The versatility of the chelated catalyst is illustrated by the high cis-selectivity (up to >98%) and high tacticity control (up to >98% syndiotactic) achieved in ring-opening-polymerization, allowing for the production of highly microstructurally controlled norbornene, norbornadiene and cyclopropene-derived polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.