The transcription of eukaryotic protein-coding genes involves complex regulation of RNA polymerase (Pol) II activity in response to physiological conditions and developmental cues. One element of this regulation involves phosphorylation of the carboxy-terminal domain (CTD) of the largest polymerase subunit by a transcription elongation factor, P-TEFb, which comprises the kinase CDK9 and cyclin T1 or T2 (ref. 1). Here we report that in human HeLa cells more than half of the P-TEFb is sequestered in larger complexes that also contain 7SK RNA, an abundant, small nuclear RNA (snRNA) of hitherto unknown function. P-TEFb and 7SK associate in a specific and reversible manner. In contrast to the smaller P-TEFb complexes, which have a high kinase activity, the larger 7SK/P-TEFb complexes show very weak kinase activity. Inhibition of cellular transcription by chemical agents or ultraviolet irradiation trigger the complete disruption of the P-TEFb/7SK complex, and enhance CDK9 activity. The transcription-dependent interaction of P-TEFb with 7SK may therefore contribute to an important feedback loop modulating the activity of RNA Pol II.
This review first discusses ways in which we can evaluate transcription inhibition, describe changes in nuclear structure due to transcription inhibition, and report on genes that are paradoxically stimulated by transcription inhibition. Next, it summarizes the characteristics and mechanisms of commonly used inhibitors: α-amanitin is highly selective for RNAP II and RNAP III but its action is slow, actinomycin D is fast but its selectivity is poor, CDK9 inhibitors such as DRB and flavopiridol are fast and reversible but many genes escape transcription inhibition. New compounds, such as triptolide, are fast and selective and able to completely arrest transcription by triggering rapid degradation of RNAP II.
The positive transcription elongation factor b (P-TEFb) plays a pivotal role in productive elongation of nascent RNA molecules by RNA polymerase II. Core active P-TEFb is composed of CDK9 and cyclin T. In addition, mammalian cell extracts contain an inactive P-TEFb complex composed of four components, CDK9, cyclin T, the 7SK snRNA and the MAQ1/HEXIM1 protein. We now report an in vitro reconstitution of 7SK-dependent HEXIM1 association to purified P-TEFb and subsequent CDK9 inhibition. Yeast three-hybrid tests and gel-shift assays indicated that HEXIM1 binds 7SK snRNA directly and a 7SK snRNArecognition motif was identified in the central part of HEXIM1 (amino acids (aa) 152-155). Data from yeast two-hybrid and pull-down assay on GST fusion proteins converge to a direct binding of P-TEFb to the HEXIM1 C-terminal domain (aa 181-359). Consistently, point mutations in an evolutionarily conserved motif (aa 202-205) were found to suppress P-TEFb binding and inhibition without affecting 7SK recognition. We propose that the RNA-binding domain of HEXIM1 mediates its association with 7SK and that P-TEFb then enters the complex through association with HEXIM1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.