In an aircraft engine, some pieces are describing a rotating movement. These parts are in contact with rotating and non-rotating parts through the bearings and gears. The different contact patches are lubricated with oil. During the lifetime of the engine, mechanical wear is produced between the contacts. This wear of the bearings and gears will produce some debris in the oil circuit of the engine. To ensure the effective operation of the aircraft engines, the debris monitoring sensors play a significant role. They detect and collect the debris in the oil. The analysis of the debris can give an indication of the overall health of the engine. The aim of the paper is to develop, design and model an oil test bench to simulate the oil lubrication circuit of an aircraft engine to test two different debris monitoring sensors. The methodology consists of studying the oil lubrication system of the aircraft engine. The first step is to build the oil test bench. Once the oil test bench is functional, tests are performed on the two debris monitoring sensors. A test plan is followed, three sizes of debris, like the type and sizes of debris found in the aircraft engine oil, are injected in the oil. The test parameters are the oil temperature, the oil flow rate and the mass of debris injected. Each time debris is injected, it is detected and caught by the two sensors. The test results given by the two sensors are similar to the mass debris injected into the oil circuit. The two sensors never detect the total mass of debris injected in the oil. On average, 55%–60% of the mass injected is detected and caught by the two sensors. The sensors are very efficient at detecting debris whose size corresponds to the design range parameters of the sensors, but the efficiency falls when detecting debris whose size lies outside this range.
This work is the continuation of previous studies on gerotor-type pump performance in turbofan engine oil systems operated as feed pumps in single-phase liquid oil. The focus here is on scavenge pumps whose role is to pump a mix of air and oil. This paper is intended to present the modifications that had to be made on the test rig from the previous studies to model a scavenge system and more generally to add two-phase flow capacity. The paper presents results from the first successful experimental test campaign. The aim is to characterize the performance of a typical pump, already tested as a feed pump, in the scavenge system. The critical performance parameter studied is the volumetric efficiency which determines the size and weight of the pump. This paper ends by drawing conclusions on the rig and the results, and linking them with the previous single-phase flows studies.
The Université Libre de Bruxelles/ Aero-Thermo-Mechanics Department (ULB/ATM) has developed a flow bench used to mimic the complete behaviour of an aircraft gas turbine engine lubrication system. This test bench has been improved to be fully instrumented and is really multi-purposes in order to test different lubrication devices in the supply circuit (pure oil) or in the scavenge part (two-phase flow) simulating real flight conditions (oil flow rate, oil temperature and pressure…). The paper will first present the characteristics of the lubrication test bench and its capabilities. In a second part, it will be presented the integration and the test results of two different types of sensors into the lubrication test bench. One sensor is based on measuring the change in frequency of a quartz crystal resonator. The other one is composed of two optical sensors, which are able to monitor different properties of the oil and also to detect particles in the oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.