IL-17 is a cytokine implicated in the regulation of inflammation. We investigated the role of this cytokine in neutrophil recruitment using a model of LPS-induced lung inflammation in mice. In the bronchoalveolar lavage, LPS induced a first influx of neutrophils peaking at day 1, followed by a second wave, peaking at day 2. IL-17 levels were increased during the late phase neutrophilia (day 2), and this was concomitant with an increased number of T cells and macrophages, together with an increase of KC and macrophage-inflammatory protein-2 levels in the lung tissue. Intranasal treatment with a neutralizing murine anti-IL-17 Ab inhibited the late phase neutrophilia. In the bronchoalveolar lavage cells, IL-17 mRNA was detected at days 1, 2, and 3 postchallenge, with a strong expression at day 2. This expression was associated with CD4+ and CD8+ cells, but also with neutrophils. When challenged with LPS, despite the absence of T cells, SCID mice also developed a neutrophilic response associated with IL-17 production. In BALB/c mice, IL-15 mRNA, associated mainly with neutrophils, was evidenced 1 day after LPS challenge. In vitro, IL-15 was able to induce IL-17 release from purified spleen CD4+ cells, but not spleen CD8+ or airway neutrophils. We have shown that IL-17, produced mainly by CD4+ cells, but also by neutrophils, plays a role in the mobilization of lung neutrophils following bacterial challenge. In addition, our results suggest that IL-15 could represent a physiological trigger that leads to IL-17 production following bacterial infection.
These data describe a novel murine model of PAH, which displays many of the hallmarks of the human disease, thus opening new avenues of investigation to better understand PAH pathophysiology.
Leptin expression in third trimester placenta (p) and leptin concentrations in umbilical cord blood (cb) were investigated in normal pregnancies [n = 10 (p), 31 (cb)] and abnormal pregnancies complicated with (i) maternal insulin-dependent diabetes [IDDM: n = 3 (p), 13 (cb)], (ii) gestational diabetes [GD: n = 2 (p), 10 (cb)] and (iii) fetal growth retardation [FGR: n = 5 (p), 5 (cb)]. By in-situ hybridization and immunohistochemistry, placental leptin mRNA and protein were co-localized to the syncytiotrophoblast and villous vascular endothelial cells. Leptin receptor was immunolocalized to the syncytiotrophoblast. Relative to controls, the FGR group was characterized by low concentrations of placental and cord blood leptin. In a twin pregnancy, the normal-sized infant exhibited more placental and cord blood leptin than its growth-retarded twin. In contrast, both diabetic groups exhibited high concentrations of placental leptin mRNA and protein. The IDDM group exhibited the highest concentrations of leptin in cord blood. No change was observed in the expression of the leptin receptor in either the growth-retarded or diabetic pregnancies. In conclusion, the localization of placental leptin suggests that it may be released into both maternal and fetal blood. Furthermore, in fetal growth-retarded and diabetic pregnancies, the changes in leptin expression in the placenta and in leptin concentrations in umbilical cord blood appear to be related.
(COPD). In this report, we have studied the anti-inflammatory properties of the reference A 2A agonist CGS-21680, given intranasally at doses of 10 and 100 g/kg, in a variety of murine models of asthma and COPD. After an acute ovalbumin challenge of sensitized mice, prophylactic administration of CGS-21680 inhibited the bronchoalveolar lavage fluid inflammatory cell influx but not the airway hyperreactivity to aerosolized methacholine. After repeated ovalbumin challenges, CGS-21680 given therapeutically inhibited the bronchoalveolar lavage fluid inflammatory cell influx but had no effect on the allergen-induced bronchoconstriction, the airway hyperreactivity, or the bronchoalveolar lavage fluid mucin levels. As a comparator, budesonide given intranasally at doses of 0.1-1 mg/kg fully inhibited all the parameters measured in the latter model. In a lipopolysaccharide-driven model, CGS-21680 had no effect on the bronchoalveolar lavage fluid inflammatory cell influx or TNF-␣, keratinocyte chemoattractant, and macrophage inflammatory protein-2 levels, but potently inhibited neutrophil activation, as measured by bronchoalveolar lavage fluid elastase levels. With the use of a cigarette smoke model of lung inflammation, CGS-21680 did not significantly inhibit bronchoalveolar lavage fluid neutrophil infiltration but reversed the cigarette smoke-induced decrease in macrophage number. Together, these results suggest that activation of the A 2A receptor would have a beneficial effect by inhibiting inflammatory cell influx and downregulating inflammatory cell activation in asthma and COPD, respectively. chronic obstructive pulmonary disorder therapies; anti-asthmatic agents; animal models ASTHMA AND CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) are chronic inflammatory disorders of the airways. Asthma is characterized by infiltration of the lung with inflammatory cells such as eosinophils and lymphocytes, mucus hypersecretion, and by the presence of bronchial hyperresponsiveness to a variety of stimuli (26). COPD is characterized by slowly progressive and irreversible airway obstruction, mucus hypersecretion, and infiltration of activated neutrophils and macrophages into the lungs (24). Adenosine is a purine nucleoside that is released during tissue hypoxia, and inflammation and has both pro-and anti-inflammatory roles mediated by four different G protein-coupled receptors, A 1 (G i coupled), A 2A (G s coupled), A 2B (G s and G q11 coupled), and A 3 (G s and G q11 coupled). Each receptor can be implicated either beneficially and/or detrimentally in the development of inflammation. However, a lot of evidence points toward a predominant role for the A 2A receptor subtype in the anti-inflammatory activities of adenosine. As such, specific activation of the A 2A receptor with agents such as CGS-21680 or ATL-146e has demonstrated anti-inflammatory activities in animal models of septic arthrosis (6), reperfusion injury (3,11,31), and bacterial meningitis (37). In addition, the use of A 2A receptor-deficient mice has clearly demons...
We report a novel mode of action for imatinib, demonstrating TPH1 down-regulation via inhibition of PDGFR-β signaling. Our data reveal interplay between PDGF and 5-HT pathways within PAH, demonstrating TPH1-dependent imatinib efficacy in collagen-mediated mechanisms of fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.