A variant of the generalized-α scheme is proposed for constrained mechanical systems represented by index-3 DAEs. Based on the analogy with linear multistep methods, an elegant convergence analysis is developed for this algorithm. Second-order convergence is demonstrated both for the generalized coordinates and the Lagrange multipliers, and those theoretical results are illustrated by numerical tests.
SUMMARYIn flexible multibody dynamics, advanced modelling methods lead to high-order non-linear differentialalgebraic equations (DAEs). The development of model reduction techniques is motivated by control design problems, for which compact ordinary differential equations (ODEs) in closed-form are desirable. In a linear framework, reduction techniques classically rely on a projection of the dynamics onto a linear subspace. In flexible multibody dynamics, we propose to project the dynamics onto a submanifold of the configuration space, which allows to eliminate the non-linear holonomic constraints and to preserve the Lagrangian structure. The construction of this submanifold follows from the definition of a global modal parameterization (GMP): the motion of the assembled mechanism is described in terms of rigid and flexible modes, which are configuration-dependent. The numerical reduction procedure is presented, and an approximation strategy is also implemented in order to build a closed-form expression of the reduced model in the configuration space. Numerical and experimental results illustrate the relevance of this approach.
This paper proposes a family of Lie group time integrators for the simulation of flexible multibody systems. The method provides an elegant solution to the rotation parametrization problem. As an extension of the classical generalized-α method for dynamic systems, it can deal with constrained equations of motion. Second-order accuracy is demonstrated in the unconstrained case. The performance is illustrated on several critical benchmarks of rigid body systems with high rotation speeds, and second-order accuracy is evidenced in all of them, even for constrained cases. The remarkable simplicity of the new algorithms opens some interesting perspectives for real-time applications, model-based control, and optimization of multibody systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.