This paper presents a structural health monitoring (SHM) method for in situ damage detection and localization in carbon fiber reinforced plates (CFRPs). The detection is achieved using the electromechanical impedance (EMI) technique employing piezoelectric transducers as high-frequency modal sensors. Numerical simulations based on the finite element method are carried out so as to simulate more than a hundred damage scenarios. Damage metrics are then used to quantify and detect changes between the electromechanical impedance spectrum of a pristine and damaged structure. The localization process relies on artificial neural networks (ANNs) whose inputs are derived from a principal component analysis of the damage metrics. It is shown that the resulting ANN can be used as a tool to predict the in-plane position of a single damage in a laminated composite plate.
In order to improve our understanding of landing on small bodies and of asteroid evolution, we use our novel drop tower facility (Sunday et al. 2016) to perform lowvelocity (2 -40 cm/s), shallow impact experiments of a 10 cm diameter aluminum sphere into quartz sand in low effective gravities (∼ 0.2 − 1 m/s 2 ). Using in-situ accelerometers we measure the acceleration profile during the impacts and determine the peak accelerations, collision durations and maximum penetration depth. We find that the penetration depth scales linearly with the collision velocity but is independent of the effective gravity for the experimental range tested, and that the collision duration is independent of both the effective gravity and the collision velocity. No rebounds are observed in any of the experiments. Our low-gravity experimental results indicate that the transition from the quasi-static regime to the inertial regime occurs for impact energies two orders of magnitude smaller than in similar impact experiments under terrestrial gravity. The lower energy regime change may be due to the increased hydrodynamic drag of the surface material in our experiments, but may also support the notion that the quasi-static regime reduces as the effective gravity becomes lower.
This work presents an experimental design for studying low-velocity collisions into granular surfaces in low-gravity. In the experiment apparatus, reduced-gravity is simulated by releasing a free-falling projectile into a surface container with a downward acceleration less than that of Earth's gravity. The acceleration of the surface is controlled through the use of an Atwood machine, or a system of pulleys and counterweights. The starting height of the surface container and the initial separation distance between the projectile and surface are variable and chosen to accommodate collision velocities up to 20 cm/s and effective accelerations of ∼0.1 to 1.0 m/s(2). Accelerometers, placed on the surface container and inside the projectile, provide acceleration data, while high-speed cameras capture the collision and act as secondary data sources. The experiment is built into an existing 5.5 m drop tower frame and requires the custom design of all components, including the projectile, surface sample container, release mechanism, and deceleration system. Data from calibration tests verify the efficiency of the experiment's deceleration system and provide a quantitative understanding of the performance of the Atwood system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.