International audienceOrganic matter is an important factor that cannot be neglected when considering global carbon cycle. New data including organic matter geochemistry at the small watershed scale are needed to elaborate more constrained carbon cycle and climatic models. The objectives are to estimate the DOC and DIC fluxes exported from small tropical watersheds and to give strong constraints on the carbon hydrodynamic of these systems. To answer these questions, we have studied the geochemistry of eleven small watersheds around Basse-Terre volcanic Island in the French West Indies during different hydrological regimes from 2006 to 2008 (i.e. low water level versus floods). We propose a complete set of carbon measurements, including DOC and DIC concentrations, δ13C data, and less commonly, some spectroscopic indicators of the nature of the organic matter. The DOC/DIC ratio varies between 0.07 and 0.30 in low water level and between 0.25 and 1.97 during floods, indicating that organic matter is mainly exported during flood events. On the light of the isotopic composition of DOC, ranging from -32.8 to -26.2 ‰ during low water level and from -30.1 to -27.2 ‰ during floods, we demonstrate that export of organic carbon is mainly controlled by perennial saprolite groundwaters, except for flood events during which rivers are also strongly influenced by soil erosion. The mean annual yields ranged from 2.5 to 5.7 t km-2 yr-1 for the DOC and from 4.8 to 19.6 t km-2 yr-1 for the DIC and exhibit a non-linear relationship with slopes of watersheds. The flash floods explain around 60% of the annual DOC flux and between 25 and 45% of the DIC flux, highlighting the important role of these extreme meteorological events on global carbon export in small tropical volcanic islands. From a carbon mass balance point of view the exports of dissolved carbon from small volcanic islands are important and should be included in global organic carbon budgets
Since its last magmatic eruption in 1530 AD, La Soufrière andesitic volcano in Guadeloupe has displayed intense hydrothermal activity and six phreatic eruptive crises. Here we report on the first direct quantification of gas plume emissions from its summit vents, which gradually intensified during the past 20 years. Gas fluxes were determined in March 2006 and March 2012 by measuring the horizontal and vertical distributions of volcanic gas concentrations in the air-diluted plume and scaling to the speed of plume transport. Fluxes in 2006 combine realtime measurements of volcanic H 2 S concentrations and plume parameters with the composition of the hot (108.5°C) fumarolic fluid at exit. Fluxes in 2012 result from MultiGAS analysis of H 2 S, H 2 O, CO 2 , SO 2 and H 2 concentrations, combined with thermal imaging of the plume geometry and dynamics. Measurements were not only focused on the most active South crater (SC) vent, but also targeted Tarissan crater and other reactivating vents. We first demonstrate that all vents are fed by a common H 2 O-rich (97-98 mol%) fluid end-member, emitted almost unmodified at SC but affected by secondary shallow alterations at other vents. Daily fluxes in 2012 averaged 200 tons of H 2 O, 15 tons of CO 2 ,~4 tons of H 2 S and 1 ton of HCl, increased by a factor~3 compared to 2006. Even though modest, such fluxes make La Soufrière the second most important volcanic gas emitter in the Lesser Antilles arc, after Soufriere Hills of Montserrat. Taking account of other hydrothermal manifestations (hot springs and diffuse soil degassing), the summit fumarolic activity is shown to contribute most of the bulk volatile and heat budget of the volcano. The hydrothermal heat output (8 MW) exceeds by orders of magnitude the contemporaneous seismic energy release. Isotopic evidences support that La Soufrière hydrothermal emissions are sustained by a variable but continuous heat and gas supply from a magma reservoir confined at 6-7 km depth. By using petro-geochemical data for La Soufrière magma(s) and their dissolved volatile content, and assuming a magmatic derivation of sulfur, we estimate that the volcanic gas fluxes measured in 2012 could result from the underground release of magmatic gas exsolved from~1400 m 3 d −1 of basaltic melt feeding the system at depth. We recommend that fumarolic gas flux at La Soufrière becomes regularly measured in the future in order to carefully monitor the temporal evolution of that magmatic supply.
The Southern Ocean remains one of the least explored marine environments. The investigation of temporal microbial dynamics has thus far been hampered by the limited access to this remote ocean. We present here high-resolution seasonal observations of the prokaryotic community composition during phytoplankton blooms induced by natural iron fertilization. A total of 18 seawater samples were collected by a moored remote autonomous sampler over 4 months at 5-11 day intervals in offshore surface waters (central Kerguelen Plateau). Illumina sequencing of the 16S rRNA gene revealed that among the most abundant amplicon sequence variants, SAR92 and Aurantivirga were the first bloom responders, Pseudomonadaceae, Nitrincolaceae and Polaribacter had successive peaks during the spring bloom decline, and Amylibacter increased in relative abundance later in the season. SAR11 and SUP05 were abundant prior to and after the blooms. Using network analysis, we identified two groups of diatoms representative of the spring and summer bloom that had opposite correlation patterns with prokaryotic taxa. Our study provides the first seasonal picture of microbial community dynamics in the open Southern Ocean and thereby offers biological insights to the cycling of carbon and iron, and to an important puzzling issue that is the modest nitrate decrease associated to iron fertilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.