The new model plant for temperate grasses, Brachypodium distachyon offers great potential as a tool for functional genomics. We have established a sodium azide-induced mutant collection and a TILLING platform, called “BRACHYTIL”, for the inbred line Bd21-3. The TILLING collection consists of DNA isolated from 5530 different families. Phenotypes were reported and organized in a phenotypic tree that is freely available online. The tilling platform was validated by the isolation of mutants for seven genes belonging to multigene families of the lignin biosynthesis pathway. In particular, a large allelic series for BdCOMT6, a caffeic acid O-methyl transferase was identified. Some mutants show lower lignin content when compared to wild-type plants as well as a typical decrease of syringyl units, a hallmark of COMT-deficient plants. The mutation rate was estimated at one mutation per 396 kb, or an average of 680 mutations per line. The collection was also used to assess the Genetically Effective Cell Number that was shown to be at least equal to 4 cells in Brachypodium distachyon. The mutant population and the TILLING platform should greatly facilitate functional genomics approaches in this model organism.
Summary Coffee species such as Coffea canephora P. (Robusta) and C. arabica L. (Arabica) are important cash crops in tropical regions around the world. C. arabica is an allotetraploid (2 n = 4 x = 44) originating from a hybridization event of the two diploid species C. canephora and C. eugenioides (2 n = 2 x = 22). Interestingly, these progenitor species harbour a greater level of genetic variability and are an important source of genes to broaden the narrow Arabica genetic base. Here, we describe the development, evaluation and use of a single‐nucleotide polymorphism ( SNP ) array for coffee trees. A total of 8580 unique and informative SNP s were selected from C. canephora and C. arabica sequencing data, with 40% of the SNP located in annotated genes. In particular, this array contains 227 markers associated to 149 genes and traits of agronomic importance. Among these, 7065 SNP s (~82.3%) were scorable and evenly distributed over the genome with a mean distance of 54.4 Kb between markers. With this array, we improved the Robusta high‐density genetic map by adding 1307 SNP markers, whereas 945 SNP s were found segregating in the Arabica mapping progeny. A panel of C. canephora accessions was successfully discriminated and over 70% of the SNP markers were transferable across the three species. Furthermore, the canephora‐derived subgenome of C. arabica was shown to be more closely related to C. canephora accessions from northern Uganda than to other current populations. These validated SNP markers and high‐density genetic maps will be useful to molecular genetics and for innovative approaches in coffee breeding.
Understanding vulnerabilities of plant populations to climate change could help preserve their biodiversity and reveal new elite parents for future breeding programmes.To this end, landscape genomics is a useful approach for assessing putative adaptations to future climatic conditions, especially in long-lived species such as trees. We conducted a population genomics study of 207 Coffea canephora trees from seven forests along different climate gradients in Uganda. For this, we sequenced 323 candidate genes involved in key metabolic and defence pathways in coffee. Seventy-one single nucleotide polymorphisms (SNPs) were found to be significantly associated with bioclimatic variables, and were thereby considered as putatively adaptive loci. These SNPs were linked to key candidate genes, including transcription factors, like DREB-like and MYB family genes controlling plant responses to abiotic stresses, as well as other genes of organoleptic interest, such as the DXMT gene involved in caffeine biosynthesis and a putative pest repellent. These climate-associated genetic markers were used to compute genetic offsets, predicting population responses to future climatic conditions based on local climate change forecasts. Using these measures of maladaptation to future conditions, substantial levels of genetic differentiation between present and future diversity were estimated for all populations and scenarios considered. The populations from the forests Zoka and Budongo, in the northernmost zone of Uganda, appeared to have the lowest genetic offsets under all predicted climate change patterns, while populations from Kalangala and Mabira, in the Lake Victoria region, exhibited the highest genetic offsets. The potential of these findings in terms of ex situ conservation strategies are discussed.
Faced with global warming, the surface area of coffee cultivation regions is expected to diminish significantly in the near future. As a result, new varieties or agronomical practices improving drought tolerance need to be found. The aim of this work is to characterize drought tolerance of Coffea canephora genotypes and their reciprocal grafted plants with physiological tools and biochemical analyses. Under greenhouse conditions, control plants (sensitive or tolerant) and reciprocal grafted plants submitted to 14 days of water deprivation show variations of the monitored parameters, such as soil and leaf water potential, stomatal conductance, and osmoprotectant compounds (sugars, polyols, amino acids). The variations observed confirm the differences between the phenotypes defined as drought-tolerant and drought-sensitive. Reciprocal grafting shows enhanced and contrasting situations. A sensitive clone grafted onto tolerant rootstock presents higher tolerance to drought and physiological or biochemical parameters similar to a drought-tolerant clone. The opposite is observed for tolerant clones grafted onto a sensitive one. More contrasted results are obtained with glucose, fructose, proline, and mannitol content which could be used as indicators for drought tolerance. Our finding shows strong variability for drought tolerance in our Robusta clones and demonstrates the impact of grafting on physiological and biochemical parameters linked to drought tolerance. The use of drought-tolerant rootstock leads to better regulation of water management and biochemical composition of the scion in drought-sensitive clones. This could be an approach to improving drought tolerance of Coffea canephora genotypes and to limiting the impact of global warming on coffee farming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.