Condensed tannins (CTs) account for up to 20% of the dry matter in forage legumes used as ruminant feeds. Beneficial animal responses to CTs have included improved growth, milk and wool production, fertility, and reduced methane emissions and ammonia volatilization from dung or urine. Most important is the ability of such forages to combat the effects of gastrointestinal parasitic nematodes. Inconsistent animal responses to CTs were initially attributed to concentration in the diet, but recent research has highlighted the importance of their molecular structures, as well as concentration, and also the composition of the diet containing the CTs. The importance of CT structural traits cannot be underestimated. Interdisciplinary research is the key to unraveling the relationships between CT traits and bioactivities and will enable future on‐farm exploitation of these natural plant compounds. Research is also needed to provide plant breeders with guidelines and screening tools to optimize CT traits, in both the forage and the whole diet. In addition, improvements are needed in the competitiveness and agronomic traits of CT‐containing legumes and our understanding of options for their inclusion in ruminant diets. Farmers need varieties that are competitive in mixed swards and have predictable bioactivities. This review covers recent results from multidisciplinary research on sainfoin (Onobrychis Mill. spp.) and provides an overview of current developments with several other tanniniferous forages. Tannin chemistry is now being linked with agronomy, plant breeding, animal nutrition, and parasitology. The past decade has yielded considerable progress but also generated more questions—an enviable consequence of new knowledge!
BackgroundPlant-derived condensed tannins (CT) show promise as a complementary option to treat gastrointestinal helminth infections, thus reducing reliance on synthetic anthelmintic drugs. Most studies on the anthelmintic effects of CT have been conducted on parasites of ruminant livestock. Oesophagostomum dentatum is an economically important parasite of pigs, as well as serving as a useful laboratory model of helminth parasites due to the ability to culture it in vitro for long periods through several life-cycle stages. Here, we investigated the anthelmintic effects of CT on multiple life cycle stages of O. dentatum.MethodsExtracts and purified fractions were prepared from five plants containing CT and analysed by HPLC-MS. Anthelmintic activity was assessed at five different stages of the O. dentatum life cycle; the development of eggs to infective third-stage larvae (L3), the parasitic L3 stage, the moult from L3 to fourth-stage larvae (L4), the L4 stage and the adult stage.ResultsFree-living larvae of O. dentatum were highly susceptible to all five plant extracts. In contrast, only two of the five extracts had activity against L3, as evidenced by migration inhibition assays, whilst three of the five extracts inhibited the moulting of L3 to L4. All five extracts reduced the motility of L4, and the motility of adult worms exposed to a CT-rich extract derived from hazelnut skins was strongly inhibited, with electron microscopy demonstrating direct damage to the worm cuticle and hypodermis. Purified CT fractions retained anthelmintic activity, and depletion of CT from extracts by pre-incubation in polyvinylpolypyrrolidone removed anthelmintic effects, strongly suggesting CT as the active molecules.ConclusionsThese results suggest that CT may have promise as an alternative parasite control option for O. dentatum in pigs, particularly against adult stages. Moreover, our results demonstrate a varied susceptibility of different life-cycle stages of the same parasite to CT, which may offer an insight into the anthelmintic mechanisms of these commonly found plant compounds.
SUMMARYPlants containing condensed tannins (CT) may have potential to control gastrointestinal nematodes (GIN) of cattle. The aim was to investigate the anthelmintic activities of four flavan-3-ols, two galloyl derivatives and 14 purified CT fractions, and to define which structural features of CT determine the anti-parasitic effects against the main cattle nematodes. We used in vitro tests targeting L1 larvae (feeding inhibition assay) and adults (motility assay) of Ostertagia ostertagi and Cooperia oncophora. In the larval feeding inhibition assay, O. ostertagi L1 were significantly more susceptible to all CT fractions than C. oncophora L1. The mean degree of polymerization of CT (i.e. average size) was the most important structural parameter: large CT reduced larval feeding more than small CT. The flavan-3-ols of prodelphinidin (PD)-type tannins had a stronger negative influence on parasite activity than the stereochemistry, i.e. cis- vs trans-configurations, or the presence of a gallate group. In contrast, for C. oncophora high reductions in the motility of larvae and adult worms were strongly related with a higher percentage of PDs within the CT fractions while there was no effect of size. Overall, the size and the percentage of PDs within CT seemed to be the most important parameters that influence anti-parasitic activity.
Sainfoin (Onobrychis viciifolia) is a tanniniferous legume forage that has potential nutritional and health benefits preventing bloating, reducing nematode larval establishment, improving N utilization, and reducing greenhouse gas emissions. However, the use of sainfoin as a fodder crop in dairy cow rations in northwestern Europe is still relatively unknown. The objective of this study was to evaluate the effect of sainfoin silage on nutrient digestibility, animal performance, energy and N utilization, and CH4 production. Six rumen-cannulated, lactating dairy cows with a metabolic body weight (BW(0.75)) of 132.5±3.6kg were randomly assigned to either a control (CON) or a sainfoin (SAIN)-based diet over 2 experimental periods of 25 d each in a crossover design. The CON diet was a mixture of grass silage, corn silage, concentrate, and linseed. In the SAIN diet, 50% of grass silage dry matter (DM) of the CON diet was exchanged for sainfoin silage. The cows were adapted to 95% of ad libitum feed intake for a 21-d period before being housed in climate-controlled respiration chambers for 4 d, during which time feed intake, apparent total-tract digestibility, N and energy balance, and CH4 production was determined. Data were analyzed using a mixed model procedure. Total daily DM, organic matter, and neutral detergent fiber intake did not differ between the 2 diets. The apparent digestibility of DM, organic matter, neutral detergent fiber, and acid detergent fiber were, respectively, 5.7, 4.0, 15.7, and 14.8% lower for the SAIN diet. Methane production per kilogram of DM intake was lowest for the SAIN diet, CH4 production as a percentage of gross energy intake tended to be lower, and milk yield was greater for the SAIN diet. Nitrogen intake, N retention, and energy retained in body protein were greater for the SAIN than for the CON diet. Nitrogen retention as a percentage of N intake tended to be greater for the SAIN diet. These results suggest that inclusion of sainfoin silage in dairy cow rations reduces CH4 per kilogram of DM intake and nutrient digestibility. Moreover, sainfoin silage improves milk production and seems to redirect metabolism toward body protein accretion at the expense of body fat.
Condensed tannins' (CTs) fate along the digestive tract of ruminants may account for the variable efficacy of CTs against gastrointestinal nematodes. We analyzed CTs in the digesta of cattle fed sainfoin. With the acetone-butanol-HCl assay, the total CTs concentrations in the digesta were close to those in the diets (6.3 and 1.5% of DM in experiments 1 and 2, respectively); thus, CTs remained potentially largely undegraded/unabsorbed. With the thiolysis assay, CTs concentration was much higher in the abomasum (2.3% of DM; expt 1) compared with the rumen and intestines, along with higher mean size and prodelphinidins percentage, corroborating CTs efficacy reported only against Ostertagia ostertagi in the abomasum. In expt 2, the dietary levels of CTs were probably too low to demonstrate anthelmintic effects in the rumen. Overall, the level of CTs accessible to thiolysis is favored under the acidic conditions of the abomasum, which seems critical for anthelmintic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.