A wide range of arthropod-borne viruses threaten both human and animal health either through their presence in Europe or through risk of introduction. Prominent among these is West Nile virus (WNV), primarily an avian virus, which has caused multiple outbreaks associated with human and equine mortality. Endemic outbreaks of West Nile fever have been reported in Italy, Greece, France, Romania, Hungary, Russia and Spain, with further spread expected. Most outbreaks in Western Europe have been due to infection with WNV Lineage 1. In Eastern Europe WNV Lineage 2 has been responsible for human and bird mortality, particularly in Greece, which has experienced extensive outbreaks over three consecutive years. Italy has experienced co-circulation with both virus lineages. The ability to manage this threat in a cost-effective way is dependent on early detection. Targeted surveillance for pathogens within mosquito populations offers the ability to detect viruses prior to their emergence in livestock, equine species or human populations. In addition, it can establish a baseline of mosquito-borne virus activity and allow monitoring of change to this over time. Early detection offers the opportunity to raise disease awareness, initiate vector control and preventative vaccination, now available for horses, and encourage personal protection against mosquito bites. This would have major benefits through financial savings and reduction in equid morbidity/mortality. However, effective surveillance that predicts virus outbreaks is challenged by a range of factors including limited resources, variation in mosquito capture rates (too few or too many), difficulties in mosquito identification, often reliant on specialist entomologists, and the sensitive, rapid detection of viruses in mosquito pools. Surveillance for WNV and other arboviruses within mosquito populations varies between European countries in the extent and focus of the surveillance. This study reviews the current status of WNV in mosquito populations across Europe and how this is informing our understanding of virus epidemiology. Key findings such as detection of virus, presence of vector species and invasive mosquito species are summarized, and some of the difficulties encountered when applying a cost-effective surveillance programme are highlighted.
Hantavirus infections are reported from many countries in Europe and with highly variable annual case numbers. In 2010, more than 2,000 human cases were reported in Germany, and numbers above the baseline have also been registered in other European countries. Depending on the virus type human infections are characterised by mild to severe forms of haemorrhagic fever with renal syndrome. The member laboratories of the European Network for diagnostics of Imported Viral Diseases present here an overview of the progression of human cases in the period from 2005 to 2010. Further we provide an update on the available diagnostic methods and endemic regions in their countries, with an emphasis on occurring virus types and reservoirs.
Background Serological immunoassays that can identify protective immunity against SARS‐CoV‐2 are needed to adapt quarantine measures, assess vaccination responses, and evaluate donor plasma. To date, however, the utility of such immunoassays remains unclear. In a mixed‐design evaluation study, we compared the diagnostic accuracy of serological immunoassays that are based on various SARS‐CoV‐2 proteins and assessed the neutralizing activity of antibodies in patient sera. Methods Consecutive patients admitted with confirmed SARS‐CoV‐2 infection were prospectively followed alongside medical staff and biobank samples from winter 2018/2019. An in‐house enzyme‐linked immunosorbent assay utilizing recombinant receptor‐binding domain (RBD) of the SARS‐CoV‐2 spike protein was developed and compared to three commercially available enzyme‐linked immunosorbent assays (ELISAs) targeting the nucleoprotein (N), the S1 domain of the spike protein (S1) and a lateral flow immunoassay (LFI) based on full‐length spike protein. Neutralization assays with live SARS‐CoV‐2 were performed. Results One‐thousand four‐hundred and seventy‐seven individuals were included comprising 112 SARS‐CoV‐2 positives (defined as a positive real‐time PCR result; prevalence 7.6%). IgG seroconversion occurred between day 0 and day 21. While the ELISAs showed sensitivities of 88.4% for RBD, 89.3% for S1, and 72.9% for N protein, the specificity was above 94% for all tests. Out of 54 SARS‐CoV‐2 positive individuals, 96.3% showed full neutralization of live SARS‐CoV‐2 at serum dilutions ≥1:16, while none of the 6 SARS‐CoV‐2 negative sera revealed neutralizing activity. Conclusions ELISAs targeting RBD and S1 protein of SARS‐CoV‐2 are promising immunoassays which shall be further evaluated in studies verifying diagnostic accuracy and protective immunity against SARS‐CoV‐2.
Background Coronaviruses (CoVs) were long thought to only cause mild respiratory and gastrointestinal symptoms in humans but outbreaks of Middle East Respiratory Syndrome (MERS)-CoV, Severe Acute Respiratory Syndrome (SARS)-CoV-1, and the recently identified SARS-CoV-2 have cemented their zoonotic potential and their capacity to cause serious morbidity and mortality, with case fatality rates ranging from 4 to 35%. Currently, no specific prophylaxis or treatment is available for CoV infections. Therefore we investigated the virucidal and antiviral potential of Echinacea purpurea (Echinaforce®) against human coronavirus (HCoV) 229E, highly pathogenic MERS- and SARS-CoVs, as well as the newly identified SARS-CoV-2, in vitro. Methods To evaluate the antiviral potential of the extract, we pre-treated virus particles and cells and evaluated remaining infectivity by limited dilution. Furthermore, we exposed cells to the extract after infection to further evaluate its potential as a prophylaxis and treatment against coronaviruses. We also determined the protective effect of Echinaforce® in re-constituted nasal epithelium. Results In the current study, we found that HCoV-229E was irreversibly inactivated when exposed to Echinaforce® at 3.2 μg/ml IC50. Pre-treatment of cell lines, however, did not inhibit infection with HCoV-229E and post-infection treatment had only a marginal effect on virus propagation at 50 μg/ml. However, we did observe a protective effect in an organotypic respiratory cell culture system by exposing pre-treated respiratory epithelium to droplets of HCoV-229E, imitating a natural infection. The observed virucidal activity of Echinaforce® was not restricted to common cold coronaviruses, as both SARS-CoV-1 and MERS-CoVs were inactivated at comparable concentrations. Finally, the causative agent of COVID-19, SARS-CoV-2 was also inactivated upon treatment with 50μg/ml Echinaforce®. Conclusions These results show that Echinaforce® is virucidal against HCoV-229E, upon direct contact and in an organotypic cell culture model. Furthermore, MERS-CoV and both SARS-CoV-1 and SARS-CoV-2 were inactivated at similar concentrations of the extract. Therefore we hypothesize that Echinacea purpurea preparations, such as Echinaforce®, could be effective as prophylactic treatment for all CoVs due to their structural similarities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.