Although proinflammatory cytokines are key mediators of tissue damage during graft-versus-host disease (GVHD), IFN␥ has previously been attributed with both protective and pathogenic effects. We have resolved this paradox by using wildtype (wt), IFN␥ ؊/؊ , and IFN␥R ؊/؊ mice as donors or recipients in well-described models of allogeneic stem cell transplantation (SCT). We show that donor-derived IFN␥ augments acute GVHD via direct effects on (1) the donor T cell to promote T helper 1 (Th1) differentiation and (2) the gastrointestinal (GI) tract to augment inflammatory cytokine generation. However, these detrimental effects are overwhelmed by a protective role of IFN␥ in preventing the development of idiopathic pneumonia syndrome (IPS). This is the result of direct effects on pulmonary parenchyma to prevent donor cell migration and expansion within the lung. Thus, IFN␥ is the key cytokine differentially controlling the development of IPS and gastrointestinal GVHD after allogeneic SCT. IntroductionAllogeneic bone marrow transplantation (BMT) is a definitive curative therapy for most hematologic malignancies and severe immunodeficiencies. The major complication of allogeneic BMT remains graft-versus-host disease (GVHD) in which the skin, gastrointestinal (GI) tract, liver, and lung are preferentially damaged by the transplanted donor immune system. 1 GVHD occurs in most (50%-70%) recipients and is largely responsible for the high mortality associated with allogeneic BMT. Idiopathic pneumonia syndrome (IPS) is an acute noninfectious lung injury that typically occurs 3 to 4 weeks after BMT, responds poorly to therapy, and is associated with a high mortality. 2 There is thus a pressing need for new treatment approaches to both prevent and treat the full spectrum of GVHD, based on a logical understanding of the underlying disease pathophysiology.Current paradigms suggest that GVHD occurs via a complex cellular network initiated by the interaction of antigen-presenting cells (APCs) and naive donor T cells. [3][4][5] Subsequent T helper 1 (Th1) differentiation leads to the generation of donor cytotoxic T lymphocytes (CTLs) and large amounts of inflammatory cytokines that damage host tissue by both major histocompatibility complex (MHC)-dependent and -independent pathways. 6 Of the Th1 cytokines, IFN␥ is perhaps the most immunologically dominant, influencing a plethora of cell subsets during allograft rejection. 7 However the effects of this cytokine on GVHD are unclear, with a number of contradictory studies [8][9][10][11] suggesting that a clearer understanding of the mechanisms involved are needed. We have re-examined this issue using both IFN␥ Ϫ/Ϫ and IFN␥R Ϫ/Ϫ stem cell transplantation (SCT) donors or recipients following myeloablative conditioning. We demonstrate that donor-derived IFN␥ indeed has both positive and negative effects on GVHD due to differential effects on donor and host tissue, and individual target organs. First, IFN␥ augments acute GVHD via direct affects on the donor T cell to promote Th1 differen...
The organic compounds of diesel exhaust particles (DEP-PAHs) have been shown to favor immunoglobulin production and bronchial hyperresponsiveness and to affect cytokine and chemokine productions. To evaluate if diesel exhaust could act in synergy with a house dust mite allergen (Der p 1), peripheral blood mononuclear cells from allergic patients were exposed to DEP-PAHs, with or without purified Der p 1. DEP-PAHs and Der p 1 separately induced an increase in interleukin (IL)-8, regulated on activation, normal T cells expressed and secreted (RANTES), and tumor necrosis factor-alpha concentrations. Interestingly, a synergy between the two stimuli was also observed. In the case of monocyte chemotactic protein (MCP)-1, DEP-PAHs reduced the release, whereas Der p 1 enhanced it. A simultaneous exposure led to reduced production as compared with allergen exposure alone, but still represented an increase as compared with the control exposure. Mitogen-activated protein (MAP) kinase Erk1/2 antagonist mainly inhibited the release of MCP-1, whereas MAP kinase p38 antagonist mainly suppressed the release of IL-8 and RANTES. Messenger RNA expression correlated with protein measurements. Moreover, supernatants from cells exposed to both DEP-PAHs and Der p 1 had a significant chemotactic activity on neutrophils and eosinophils. These findings suggest that simultaneous exposure of allergic patients to DEPs and allergens could result in high local chemokine levels via MAP kinase pathways activation, increasing the likelihood of reaching a critical threshold leading to the initiation of respiratory allergic symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.