High-performance dynamic language implementations make heavy use of speculative optimizations to achieve speeds close to statically compiled languages. These optimizations are typically performed by a just-in-time compiler that generates code under a set of assumptions about the state of the program and its environment. In certain cases, a program may execute code compiled under assumptions that are no longer valid. The implementation must then deoptimize the program on-the-fly; this entails finding semantically equivalent code that does not rely on invalid assumptions, translating program state to that expected by the target code, and transferring control. This paper looks at the interaction between optimization and deoptimization, and shows that reasoning about speculation is surprisingly easy when assumptions are made explicit in the program representation. This insight is demonstrated on a compiler intermediate representation, named sourir, modeled after the high-level representation for a dynamic language. Traditional compiler optimizations such as constant folding, unreachable code elimination, and function inlining are shown to be correct in the presence of assumptions. Furthermore, the paper establishes the correctness of compiler transformations specific to deoptimization: namely unrestricted deoptimization, predicate hoisting, and assume composition.
The R programming language combines a number of features considered hard to analyze and implement efficiently: dynamic typing, reflection, lazy evaluation, vectorized primitive types, first-class closures, and extensive use of native code. Additionally, variable scopes are reified at runtime as first-class environments. The combination of these features renders most static program analysis techniques impractical, and thus, compiler optimizations based on them ineffective. We present our work on PIR, an intermediate representation with explicit support for first-class environments and effectful lazy evaluation. We describe two dataflow analyses on PIR: the first enables reasoning about variables and their environments, and the second infers where arguments are evaluated. Leveraging their results, we show how to elide environment creation and inline functions.CCS Concepts • Software and its engineering → Compilers.
Just-in-time compilers for dynamic languages routinely generate code under assumptions that may be invalidated at run-time, this allows for specialization of program code to the common case in order to avoid unnecessary overheads due to uncommon cases. This form of software speculation requires support for deoptimization when some of the assumptions fail to hold. This paper presents a model just-in-time compiler with an intermediate representation that explicits the synchronization points used for deoptimization and the assumptions made by the compiler's speculation. We also present several common compiler optimizations that can leverage speculation to generate improved code. The optimizations are proved correct with the help of a proof assistant. While our work stops short of proving native code generation, we demonstrate how one could use the verified optimization to obtain significant speed ups in an end-to-end setting.
In order to generate efficient code, dynamic language compilers often need information, such as dynamic types, not readily available in the program source. Leveraging a mixture of static and dynamic information, these compilers speculate on the missing information. Within one compilation unit, they specialize the generated code to the previously observed behaviors, betting that past is prologue. When speculation fails, the execution must jump back to unoptimized code. In this paper, we propose an approach to further the specialization, by disentangling classes of behaviors into separate optimization units. With contextual dispatch, functions are versioned and each version is compiled under different assumptions. When a function is invoked, the implementation dispatches to a version optimized under assumptions matching the dynamic context of the call. As a proof-of-concept, we describe a compiler for the R language which uses this approach. Our implementation is, on average, 1.7× faster than the GNU R reference implementation. We evaluate contextual dispatch on a set of benchmarks and measure additional speedup, on top of traditional speculation with deoptimization techniques. In this setting contextual dispatch improves the performance of 18 out of 46 programs in our benchmark suite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.