Allometric equations use easily measurable biometric variables to determine the aboveground and belowground biomasses of trees. Equations produced for estimating the biomass within Canadian forests at a large scale have not yet been validated for eastern Canadian boreal open woodlands (OWs), where trees experience particular environmental conditions. In this study, we harvested 167 trees from seven boreal OWs in Quebec, Canada for biomass and allometric measurements. These data show that Canadian national equations accurately predict the whole aboveground biomass for both black spruce and jack pine trees, but underestimated branches biomass, possibly owing to a particular tree morphology in OWs relative to closed-canopy stands. We therefore developed ad hoc allometric equations based on three power models including diameter at breast height (DBH) alone or in combination with tree height (H) as allometric variables. Our results show that although the inclusion of H in the model yields better fits for most tree compartments in both species, the difference is minor and does not markedly affect biomass C stocks at the stand level. Using these newly developed equations, we found that carbon stocks in afforested OWs varied markedly among sites owing to differences in tree growth and species. Nine years after afforestation, jack pine plantations had accumulated about five times more carbon than black spruce plantations (0.14 vs. 0.80 t C·ha−1), highlighting the much larger potential of jack pine for OW afforestation projects in this environment.
AUTOMNE 2012 RESUMELe réchauffement du climat actuel est notamment attribuable à l'utilisation des combustibles fossiles et aux changements de vocation des terres, spécialement la deforestation, ce qui cause une perte de puits de carbone (C). L'augmentation de la capacité des puits de C terrestres est donc un moyen pour atténuer l'effet des changements climatiques. En forêt boréale, des terrains classés improductifs et appelés dénudés secs (DS) sont présents en quantités telles qu'ils représentent un potentiel réel de séquestration accru de C. Les DS sont des milieux naturellement ouverts dispersés en îlots au sein de la forêt boréale continue. Le processus de formation des DS est lié à des perturbations successives soit le feu ou des épidémies d'insectes. Une simulation réalisée à partir d'un DS récolté, scarifié puis planté montre un bilan C net devenant neutre durant la 26e année suivant le boisement. La simulation montre que les DS ont un potentiel théorique de séquestration annuelle de 1,11 C ha" 1 an" 1 en moyenne, pour un total de 771 . La quantité de C contenue dans la matière organique contribue grandement au total de C présent dans les DS. Le ratio biomasse racinaire/biomasse aérienne mesuré dans l'étude est supérieur à ce que l'on retrouve normalement pour l'épinette noire, avec une moyenne de 37 %. Le scarifiage a causé une perte de C de 0,67 t C ha" Tableau 2. Sommaire de l'ANOVA des classes de DHP (2 = 0 à 3,9 cm; 6 = 4 à 7,9 cm; 10 = 8 à 11,9 cm; 14 = 12 à 15,9 cm; 16 et + = 16 cm et plus) de la biomasse aérienne des arbres études pour les sept blocs et chacun des deux scénarios (SO et SI) 23Tableau 3. Équations allométriques pour la masse sèche des quatre compartiments des arbres (tiges, aiguilles, branches, racines) des Epn (
Boreal lichen woodlands (LWs) are stable low tree-density zones of the Canadian boreal forest whose afforestation has been proposed as a way to create new C sinks and thus mitigate climate change. Planting operations in these remote areas are however costly and time-consuming, and may not be necessary when soil scarification is followed by dense natural regeneration. In the present study, we assessed the natural regeneration potential and dynamics in six boreal LWs of Québec, Canada, 11 years after soil scarification. The number, size (height and stem diameter) and age of seedlings were measured in 2-4 sampling plots per site (18 plots in total). Our data show that scarification operations produced on average 1,400 m2 ha–1 of exposed mineral soil (scarification intensity of 14%) with, however, a large within-site variability. The natural regeneration was mainly composed of black spruce seedlings (> 95%), averaged ∼12,000 seedlings ha–1 across the six sites and significantly varied among sites, mostly due to the variation in scarification intensity. Seedling density averaged ∼9 seedlings m–2 of exposed mineral soil and increased with seed tree mean diameter at breast height (DBH) (R2 = 0.51; P < 0.05) but not with the density of seed trees, revealing the importance of old and large seed trees in natural regeneration success. Together, scarification intensity and the DBH of remaining seed trees explained ∼60% of the variation in natural regeneration density across the 18 sampled plots. The rate of establishment of seedlings was generally high – with on average 60% of the carrying capacity of the substrate being reached within three years following scarification – and increased with seed tree mean DBH (R2 = 0.77; P < 0.05). However, the growth rate of seedlings was very low. Eleven years after scarification, 60% of the seedlings were < 15 cm and the height of 10-yr-old seedlings averaged 27.5 cm. Thus, even though seedling establishment was successful, the biomass accumulated by the natural regeneration was negligible in the span of a decade. Therefore, the implementation of afforestation following scarification appears to be necessary to create significant C sinks in the midterm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.