The Cold molecule Nuclear Time-Reversal EXperiment (CeNTREX) is a new effort aiming for a significant increase in sensitivity over the best present upper bounds on the strength of hadronic time reversal (T ) violating fundamental interactions. The experimental signature will be shifts in nuclear magnetic resonance frequencies of 205 Tl in electrically-polarized thallium fluoride (TlF) molecules. Here we describe the motivation for studying these T -violating interactions and for using TlF to do so. To achieve higher sensitivity than earlier searches for T -violation in TlF, CeNTREX uses a cryogenic molecular beam source, optical state preparation and detection, and modern methods of coherent quantum state manipulation. Details of the measurement scheme and the current state of the apparatus are presented, with quantitative measurements of the TlF beam. Finally, the estimated sensitivity and methods to control systematic errors are discussed.
We report on precise measurements of magnetic field gradients extracted from transverse relaxation rates of precessing spin samples. The experimental approach is based on the free precession of gaseous, nuclear spin polarized 3 He and 129 Xe atoms in a spherical cell inside a magnetic guiding field of about 400 nT using LTC SQUIDs as low-noise magnetic flux detectors. The transverse relaxation rates of both spin species are simultaneously monitored as magnetic field gradients are varied. For transverse relaxation times reaching 100 h, the residual longitudinal field gradient across the spin sample could be deduced to be|∇Bz| = (5.6 ± 0.4) pT/cm. The method takes advantage of the high signal-to-noise ratio with which the decaying spin precession signal can be monitored that finally leads to the exceptional accuracy to determine magnetic field gradients at the sub pT/cm scale.
We report on the first preliminary result of our 129 Xe EDM measurement performed by the MIXed collaboration. The aim of this report is to demonstrate the feasibility of a new method to set limits on nuclear EDMs by investigating the EDM of the diamagnetic 129 Xe atoms. In our setup, hyperpolarized 3 He serves as a comagnetometer needed to suppress magnetic field fluctuations. The free induction decay of the two polarized spin species is directly measured by low noise DC SQUIDs, and the weighted phase difference extracted from these measurements is used to determine a preliminary upper limit on the 129 Xe EDM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.