Background Oxidation-reduction and acid-base reactions are essential for the maintenance of all living organisms. However, redox potential (Eh) has received little attention in agronomy, unlike pH, which is regarded as a master variable. Agronomists are probably depriving themselves of a key factor in crop and soil science which could be a useful integrative tool. Scope This paper reviews the existing literature on Eh in various disciplines connected to agronomy, whether associated or not with pH, and then integrates this knowledge within a composite framework. Conclusions This transdisciplinary review offers evidence that Eh and pH are respectively and jointly major drivers of soil/plant/microorganism systems. Information on the roles of Eh and pH in plant and microorganism physiology and in soil genesis converges to form an operational framework for further studies of soil/plant/microorganism functioning. This framework is based on the hypothesis that plants physiologically function within a specific internal Eh-pH range and that, along with microorganisms, they alter Eh and pH in the rhizosphere to ensure homeostasis at the cell level. This new perspective could help in bridging several disciplines related to agronomy, and across micro and macro-scales. It should help to improve cropping systems design and management, in conventional, organic, and conservation agriculture.
Biochars are complex heterogeneous materials that consist of mineral phases, amorphous C, graphitic C, and labile organic molecules, many of which can be either electron donors or acceptors when placed in soil. Biochar is a reductant, but its electrical
OPEN ACCESSAgronomy 2015, 5 323 and electrochemical properties are a function of both the temperature of production and the concentration and composition of the various redox active mineral and organic phases present. When biochars are added to soils, they interact with plant roots and root hairs, micro-organisms, soil organic matter, proteins and the nutrient-rich water to form complex organo-mineral-biochar complexes Redox reactions can play an important role in the development of these complexes, and can also result in significant changes in the original C matrix. This paper reviews the redox processes that take place in soil and how they may be affected by the addition of biochar. It reviews the available literature on the redox properties of different biochars. It also reviews how biochar redox properties have been measured and presents new methods and data for determining redox properties of fresh biochars and for biochar/soil systems.
Agricultural soils are the primary anthropogenic source of atmospheric nitrous oxide (N2O), contributing to global warming and depletion of stratospheric ozone. Biochar addition has shown potential to lower soil N2O emission, with the mechanisms remaining unclear. We incubated eucalypt biochar (550 °C) – 0, 1 and 5% (w/w) in Ferralsol at 3 water regimes (12, 39 and 54% WFPS) – in a soil column, following gamma irradiation. After N2O was injected at the base of the soil column, in the 0% biochar control 100% of expected injected N2O was released into headspace, declining to 67% in the 5% amendment. In a 100% biochar column at 6% WFPS, only 16% of the expected N2O was observed. X-ray photoelectron spectroscopy identified changes in surface functional groups suggesting interactions between N2O and the biochar surfaces. We have shown increases in -O-C = N /pyridine pyrrole/NH3, suggesting reactions between N2O and the carbon (C) matrix upon exposure to N2O. With increasing rates of biochar application, higher pH adjusted redox potentials were observed at the lower water contents. Evidence suggests that biochar has taken part in redox reactions reducing N2O to dinitrogen (N2), in addition to adsorption of N2O.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.