This paper adds a number of novel concepts into global s/t cut methods improving their efficiency and making them relevant for a wider class of applications in vision where algorithms should ideally run in real-time. Our new Active Cuts (AC) method can effectively use a good approximate solution (initial cut) that is often available in dynamic, hierarchical, and multi-label optimization problems in vision. In many problems AC works faster than the state-of-the-art max-flow methods [2] even if initial cut is far from the optimal one. Moreover, empirical speed improves several folds when initial cut is spatially close to the optima. Before converging to a global minima, Active Cuts outputs a multitude of intermediate solutions (intermediate cuts) that, for example, can be used be accelerate iterative learning-based methods or to improve visual perception of graph cuts realtime performance when large volumetric data is segmented.Finally, it can also be combined with many previous methods for accelerating graph cuts.
Based on recent work on Stochastic Partial Differential Equations (SPDEs), this paper presents a simple and well-founded method to implement the stochastic evolution of a curve. First, we explain why great care should be taken when considering such an evolution in a Level Set framework. To guarantee the well-posedness of the evolution and to make it independent of the implicit representation of the initial curve, a Stratonovich differential has to be introduced. To implement this differential, a standard Ito plus drift approximation is proposed to turn an implicit scheme into an explicit one. Subsequently, we consider shape optimization techniques, which are a common framework to address various applications in Computer Vision, like segmentation, tracking, stereo vision etc. The objective of our approach is to improve these methods through the introduction of stochastic motion principles. The extension we propose can deal with local minima and with complex cases where the gradient of the objective function with respect to the shape is impossible to derive exactly. Finally, as an application, we focus on image segmentation methods, leading to what we call Stochastic Active Contours.
Classic mosaic is one of the oldest and most durable art forms. There has been a growing interest in simulating classic mosaics from digital images recently. To be visually pleasing, a mosaic should satisfy the following constraints: tiles should be non-overlapping, tiles should align to the perceptually important edges in the underlying digital image, and orientation of the neighbouring tiles should vary smoothly across the mosaic. Most of the existing approaches operate in two steps: first they generate tile orientation field and then pack the tiles according to this field. However, previous methods perform these two steps based on heuristics or local optimisation which, in some cases, is not guaranteed to converge. Some other major disadvantages of previous approaches are: (i) either substantial user interaction or hard decision making such as edge detection is required before mosaicing starts (ii) the number of tiles per mosaic must be fixed beforehand, which may cause either undesired overlap or gap space between the tiles. In this work, we propose a novel approach by formulating the mosaic simulating problem in a global energy optimisation framework. Our algorithm also follows the two-step approach, but each step is performed with global optimisation. For the first step, we observe that the tile orientation constraints can be naturally formulated in an energy function that can be optimised with the α-expansion algorithm. For the second step of tightly packing the tiles, we develop a novel graph cuts based algorithm. Our approach does not require user interaction, explicit edge detection, or fixing the number of tiles, while producing results that are visually pleasing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.