We study the "hyperboloidal Cauchy problem" for linear and semilinear wave equations on Minkowski space-time, with initial data in weighted Sobolev spaces allowing singular behaviour at the boundary, or with polyhomogeneous initial data. Specifically, we consider nonlinear symmetric hyperbolic systems of a form which includes scalar fields with a λφ p nonlinearity, as well as wave maps, with initial data given on a hyperboloid; several of the results proved apply to general space-times admitting conformal completions at null infinity, as well to a large class of equations with a similar non-linearity structure. We prove existence of solutions with controlled asymptotic behaviour, and asymptotic expansions for solutions when the initial data have such expansions. In particular we prove that polyhomogeneous initial data (satisfying compatibility conditions) lead to solutions which are polyhomogeneous at the conformal boundary I + of the Minkowski space-time.
Abstract. -We study the "hyperboloidal Cauchy problem" for linear and semilinear wave equations on Minkowski space-time, with initial data in weighted Sobolev spaces allowing singular behavior at the boundary, or with polyhomogeneous initial data. Specifically, we consider nonlinear symmetric hyperbolic systems of a form which includes scalar fields with a λφ p nonlinearity, as well as wave maps, with initial data given on a hyperboloid; several of the results proved apply to general space-times admitting conformal completions at null infinity, as well to a large class of equations with a similar non-linearity structure. We prove existence of solutions with controlled asymptotic behavior, and asymptotic expansions for solutions when the initial data have such expansions. In particular we prove that polyhomogeneous initial data (satisfying compatibility conditions) lead to solutions which are polyhomogeneous at the conformal boundary I + of the Minkowski space-time. Résumé (Champs rayonnants). -Nousétudions le « problème de Cauchy hyperboloïdal » pour deséquations d'ondes linéaires et semi-linéaires sur l'espace-temps de Minkowski, avec des données initiales, singulières au bord, dans des espaces de Sobolevà poids, où polyhomogènes. Plus précisement, nous considérons une classe de systèmes symétriques hyperboliques non-linéaires, compatibles avec l'équation d'onde scalaire λφ p , ainsi qu'avec des applications d'onde, avec données initiales prescrites sur un hyperboloide. Plusieurs de nos résultats restent valables pour une classe gé-nérale d'espace-temps avec complétions conformesà l'infini isotrope, ainsi que pour une large classe d'équations avec une certaine structure des termes non-linéaires. Nous démontrons l'existence de solutions avec comportement asymptotique contrôlé, ainsi que des développements asymptotiques si les données initiales en possèdent. En particulier nous démontrons, sous une condition de compatibilité, que les données initiales polyhomogènes conduisentà des solutions polyhomogènes près du bord conforme I + de l'espace-temps de Minkowski.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.