ObjectivesTo describe age group patterns for injury incidence, severity and burden in elite male youth football.MethodsProspective cohort study capturing data on individual exposure and time-loss injuries from training and matches over four seasons (2016/2017 through 2019/2020) at a national football academy (U13–U18; age range: 11–18 years). Injury incidence was calculated as the number of injuries per 1000 hours, injury severity as the median number of days lost and injury burden as the number of days lost per 1000 hours.ResultsWe included 301 players (591 player-seasons) and recorded 1111 time-loss injuries. Overall incidence was 12.0 per 1000 hours (95% CI 11.3 to 12.7) and burden was 255 days lost per 1000 hours (252 to 259). The mean incidence for overall injuries was higher in the older age groups (7.8 to 18.6 injuries per 1000 hours), while the greatest burden was observed in the U16 age group (425 days; 415 to 435). In older age groups, incidence and burden were higher for muscle injuries and lower for physis injuries. Incidence of joint sprains and bone stress injuries was greatest for players in the U16, U17 and U18 age groups, with the largest burden observed for U16 players. No clear age group trend was observed for fractures.ConclusionInjury patterns differed with age; tailoring prevention programmes may be possible.
ObjectiveInvestigate the incidence and burden of injuries by age group in youth football (soccer) academy players during four consecutive seasons.MethodsAll injuries that caused time-loss or required medical attention (as per consensus definitions) were prospectively recorded in 551 youth football players from under 9 years to under 19 years. Injury incidence (II) and burden (IB) were calculated as number of injuries per squad season (s-s), as well as for type, location and age groups.ResultsA total of 2204 injuries were recorded. 40% (n=882) required medical attention and 60% (n=1322) caused time-loss. The total time-loss was 25 034 days. A squad of 25 players sustained an average of 30 time-loss injuries (TLI) per s-s with an IB of 574 days lost per s-s. Compared with the other age groups, U-16 players had the highest TLI incidence per s-s (95% CI lower-upper): II= 59 (52 to 67); IB=992 days; (963 to 1022) and U-18 players had the greatest burden per s-s: II= 42.1 (36.1 to 49.1); IB= 1408 days (1373 to 1444). Across the cohort of players, contusions (II=7.7/s-s), sprains (II=4.9/s-s) and growth-related injuries (II=4.3/s-s) were the most common TLI. Meniscus/cartilage injuries had the greatest injury severity (95% CI lower-upper): II= 0.4 (0.3 to 0.7), IB= 73 days (22 to 181). The burden (95% CI lower-upper) of physeal fractures (II= 0.8; 0.6 to 1.2; IB= 58 days; 33 to 78) was double than non-physeal fractures.SummaryAt this youth football academy, each squad of 25 players averaged 30 injuries per season which resulted in 574 days lost. The highest incidence of TLI occurred in under-16 players, while the highest IB occurred in under-18 players.
Background: The association between injury risk and skeletal maturity in youth soccer has received little attention. Purpose: To prospectively investigate injury patterns and incidence in relation to skeletal maturity in elite youth academy soccer players and to determine the injury risks associated with the skeletal maturity status, both overall and to the lower limb apophysis. Study Design: Descriptive epidemiology study. Methods: All injuries that required medical attention and led to time loss were recorded prospectively during 4 consecutive seasons in 283 unique soccer players from U-13 (12 years of age) to U-19 (18 years). The skeletal age (SA) was assessed in 454 player-seasons using the Fels method, and skeletal maturity status (SA minus chronological age) was classified as follows: late, SA >1 year behind chronological age; normal, SA ±1 year of chronological age; early, SA >1 year ahead of chronological age; and mature, SA = 18 years. An adjusted Cox regression model was used to analyze the injury risk. Results: A total of 1565 injuries were recorded; 60% were time-loss injuries, resulting in 17,772 days lost. Adjusted injury-free survival analysis showed a significantly greater hazard ratio (HR) for different status of skeletal maturity: early vs normal (HR = 1.26 [95% CI, 1.11-1.42]; P < .001) and early vs mature (HR = 1.35 [95% CI, 1.17-1.56]; P < .001). Players who were skeletally mature at the wrist had a substantially decreased risk of lower extremity apophyseal injuries (by 45%-61%) compared with late ( P < .05), normal ( P < .05), and early ( P < .001) maturers. Conclusion: Musculoskeletal injury patterns and injury risks varied depending on the players’ skeletal maturity status. Early maturers had the greatest overall adjusted injury risk. Players who were already skeletally mature at the wrist had the lowest risk of lower extremity apophyseal injuries but were still vulnerable for hip and pelvis apophyseal injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.