Poly(ether ether ketone) (PEEK) films were chemically modified, by surface wet chemistry, into PEEK-OH, PEEK-NH2, and PEEK-NCO. Fibronectin (FN) adsorption, in the presence or absence of two non-ionic surfactants, was compared onto PEEK, PEEK-OH, and PEEK-NH2 on which the protein can only be adsorbed, and onto PEEK-NCO on which FN could be covalently grafted. The amounts of FN present on the various supports were assayed by ELISA and LSC (with 125I-labeled FN). The remarkable effect of Pluronic F68 in preventing non-specific protein adhesion on the less hydrophilic surfaces was pointed out. Accordingly, a procedure could be proposed that allows minimal FN adhesion vs FN fixation on PEEK-NCO. The resulting PEEK-FN film, which immobilized 120-150 ng FN cm(-2), constitutes a new substratum for cell cultivation.
The surface reduction of amorphous poly(aryl ether ether ketone) (PEEK) film was successfully achieved by wet chemistry using a solution of NaBH4 in DMSO at 120 °C for 3 h. The resulting PEEK-OH film was fully characterized by MIR, UV−visible, and 1H NMR spectroscopies; all the data were consistent with those of the references, 4-(4-methoxyphenoxy)benzhydrol and bulk-reduced PEEK (“PEEK-OH”). The surface of PEEK-OH film was analyzed by X-ray photoelectron spectroscopy (XPS). From the fine structures of the C1s and O1s peaks, we could determine a ratio of reduction reaching 75−85% of the monomer units contained in the 10 outermost atomic layers. The surface reactivity of the hydroxyl groups was assayed by derivatization with [3H]acetic anhydride followed by liquid scintillation counting (LSC) of the sample-associated radioactivity. The PEEK-OH film was reacted with p-nitrophenyl chloroformate to furnish an activated surface (PEEK-OCO2PNP), the basic hydrolysis of which allowed the indirect spectrophotometric assay of the reactive OH groups. The PEEK-OCO2PNP film was further used to covalently fix amine derivatives via a carbamate linkage. Using [3H]lysine and trifluoroethylamine, we were able to assay the surface reactivity by LSC and XPS respectively. The ratios of surface derivatization were within 5−30%. The PEEK-OH film was used as substrate for the cultivation of CaCo2 epithelial cells; the presence of surface hydroxyl functions moderately improves the polymer biocompatibility.
A series of surface-functionalized poly(ether ether ketone) (PEEK) films has been prepared by selective wet-chemistry; they are hydroxylated polymer (PEEK-OH) obtained by reduction, aminated polymer (PEEK-[]-NH2) prepared by coupling a diisocyanate reagent to PEEK-OH (PEEK-[]-NCO) followed by hydrolysis, and carboxylated and aminocarboxylated polymers (PEEK-[]-GABA and PEEK-Lysine) resulting from the coupling of aminoacids to PEEK-[]-NCO. The aminated and carboxylated substrata promoted the adhesion and growth of CaCo2 cells in the presence of serum. Fibronectin (FN), an extra-cellular matrix protein, has been covalently fixed and/or adsorbed on various PEEK substrata, in the presence or not of a polymeric surfactant (Pluronic F68). The performances of the FN-grafted substrata (PEEK-[]-FN(1) and PEEK-[]-FN(2)) were significantly higher than those of reference substrata simply coated with FN (PEEK-OH(+FN)(1) and (2), PEEK-[]-NH2(+FN)(1) and (2)), considering the adhesion and spreading of CaCo2 cells in the absence of serum. Moreover, the stability of the adherent cells on the FN-adsorbed substrata dramatically depended on the experimental conditions applied during the PEEK coating with FN.
Bioluminescence, the emission of ecologically functional light by living organisms, emerged independently on several occasions, yet the evolutionary origins of most bioluminescent systems remain obscure. We propose that the luminescent substrates of the luminous reactions (luciferins) are the evolutionary core of most systems, while luciferases, the enzymes catalysing the photogenic oxidation of the luciferin, serve to optimise the expression of the endogenous chemiluminescent properties of the luciferin. Coelenterazine, a luciferin occurring in many marine bioluminescent groups, has strong antioxidative properties as it is highly reactive with reactive oxygen species such as the superoxide anion or peroxides. We suggest that the primary function of coelenterazine was originally the detoxification of the deleterious oxygen derivatives. The functional shift from its antioxidative to its light-emitting function might have occurred when the strength of selection for antioxidative defence mechanisms decreased. This might have been made possible when marine organisms began colonising deeper layers of the oceans, where exposure to oxidative stress is considerably reduced because of reduced light irradiance and lower oxygen levels. A reduction in metabolic activity with increasing depth would also have decreased the endogenous production of reactive oxygen species. Therefore, in these organisms, mechanisms for harnessing the chemiluminescence of coelenterazine in specialised organs could have developed, while the beneficial antioxidative properties were maintained in other tissues. The full range of graded irradiance in the mesopelagic zone, where the majority of organisms are bioluminescent, would have provided a continuum for the selection and improvement of proto-bioluminescence. Although the requirement for oxygen or reactive oxygen species observed in bioluminescent systems reflects the high energy required to produce visible light, it may suggest that oxygen-detoxifying mechanisms provided excellent foundations for the emergence of many bioluminescent systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.