Nebulized colistin provides rapid and efficient bacterial killing in ventilated piglets with inoculation pneumonia caused by Pseudomonas aeruginosa.
Diacerein is a drug for the treatment of patients with osteoarthritis. This drug is administered orally as 50 mg twice daily. Diacerein is entirely converted into rhein before reaching the systemic circulation. Rhein itself is either eliminated by the renal route (20%) or conjugated in the liver to rhein glucuronide (60%) and rhein sulfate (20%); these metabolites are mainly eliminated by the kidney. The pharmacokinetics characteristics of diacerein are about the same in young healthy volunteers and elderly people with normal renal function, both after a single dose (50 mg) or repeated doses (25 to 75 mg twice daily). Rhein kinetics after single oral doses of diacerein are linear in the range 50 to 200 mg. However, rhein kinetics are time-dependent, since the nonrenal clearance decreases with repeated doses. This results in a moderate increase in maximum plasma concentration, area under the plasma concentration-time curve and elimination half-life. Nevertheless, the steady-state is reached by the third administration and the mean elimination half-life is then around 7 to 8 hours. Taking diacerein with a standard meal delays systemic absorption, but is associated with a 25% increase in the amount absorbed. Mild-to-severe (Child Pugh's grade B to C) liver cirrhosis does not change the kinetics of diacerein, whereas mild-to-severe renal insufficiency (creatinine clearance < 2.4 L/h) is followed by accumulation of rhein which justifies a 50% reduction of the standard daily dosage. Rhein is highly bound to plasma proteins (about 99%), but this binding is not saturable so that no drug interactions are likely to occur, in contrast to those widely reported with nonsteroidal anti-inflammatory drugs. Except for moderate and transient digestive disturbances (soft stools, diarrhoea), diacerein is well tolerated and seems neither responsible for gastrointestinal bleeding nor for renal, liver or haematological toxicity.
Acyclovir is approved for the treatment of herpes simplex virus (HSV) and varicella-zoster virus (VZV)infections in children by the intravenous and oral routes. However, its use by the oral route in children younger than 2 years of age is limited due to a lack of pharmacokinetic data. The objectives of the present study were to determine the typical pharmacokinetics of an oral suspension of acyclovir given to children younger than 2 years of age and the interindividual variabilities in the values of the pharmacokinetic parameters in order to support the proposed dosing regimen (24 mg/kg of body weight three times a day for patients younger than 1 month of age or four times a day otherwise). Children younger than age 2 years with HSV or VZV infections were enrolled in a multicenter study. Children were treated for at least 5 days with an acyclovir oral suspension. Plasma samples were obtained at steady state, before acyclovir administration, and at 2, 3, 5, and 8 h after acyclovir administration. Acyclovir concentrations were measured by radioimmunoassay. The data were analyzed by a population approach. Data for 79 children were considered in the pharmacokinetic study (212 samples, 1 to 5 samples per patient). Acyclovir clearance was related to the estimated glomerular filtration rate, body surface area, and serum creatinine level. The volume of distribution was related to body weight. The elimination half-life decreased sharply during the first month after birth, from 10 to 15 h to 2.5 h. Bioavailability was 0.12. The interindividual variability was less pronounced when the parameters were normalized with respect to body weight. Hence, dosage adjustment by body weight is recommended for this population. Simulations showed that the length of time that acyclovir remains above the 50% inhibitory concentration during a 24-h period was more than 12 h for HSV but not for VZV. The proposed dosing regimen seems adequate for the treatment of HSV infections, while for the treatment of VZV infections, a twofold increase in the dose seems necessary for children older than age 3 months.Acyclovir is currently used for the prevention and treatment of herpes simplex virus (HSV) and varicella-zoster virus (VZV) infections (7). It is available at different dosages in the form of tablets, oral suspensions (containing 200, 400, or 800 mg in 10 ml), and injectable solutions. About 20 clinical studies have documented the use of acyclovir in children (for a review, see reference 24). Most frequently, acyclovir has been administered intravenously. Hintz et al. (8) recommended 10 mg/kg of body weight every 8 h (q8h) for neonates, while Blum et al.(2) recommended 250 mg/m 2 (for HSV infections) and 500 mg/m 2 (for HSV encephalitis and VZV infections) q8h in children between 3 months and 12 years of age. Owing to the ease of its administration and dosage adjustment, the oral suspension is also used in children. The recommended dosage in neonates is 100 mg four times a day (q.i.d.) (HSV infections) and 200 mg q.i.d. (for VZV infections). I...
Nebulized ceftazidime provides more efficient bacterial killing in ventilated piglets with pneumonia caused by Pseudomonas aeruginosa with impaired sensitivity to ceftazidime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.