Human cytomegalovirus (HCMV) is a widely spread herpesvirus, suggested to play a role in tumor progression. US28, a chemokine receptor encoded by HCMV, binds a broad spectrum of chemokines and constitutively activates various pathways linked to proliferation. Our studies reveal that expression of US28 induces a proangiogenic and transformed phenotype by up-regulating the expression of vascular endothelial growth factor and enhancing cell growth and cell cycle progression. US28-expressing cells promote tumorigenesis when injected into nude mice. The G proteinuncoupled constitutively inactive mutant of US28, induces delayed and attenuated tumor formation, indicating the importance of constitutive receptor activity in the early onset of tumor development. Importantly, also in glioblastoma cells infected with the newly isolated clinical HCMV strain Titan, US28 was shown to be involved in the HCMV-induced angiogenic phenotype. Hence, the constitutively activated chemokine receptor US28 might act as a viral oncogene and enhance and͞or promote HCMV-associated tumor progression.cancer ͉ G protein-coupled receptor ͉ VEGF ͉ viral infection ͉ drug target
The human cytomegalovirus encodes a beta-chemokine receptor (US28) that is distantly related to the human chemokine receptors CCR5 and CXCR4, which also serve as cofactors for the entry into cells of human immunodeficiency virus-type 1 (HIV-1). Like CCR5, US28 allowed infection of CD4-positive human cell lines by primary isolates of HIV-1 and HIV-2, as well as fusion of these cell lines with cells expressing the viral envelope proteins. In addition, US28 mediated infection by cell line-adapted HIV-1 for which CXCR4 was an entry cofactor.
The CXCR-4 chemokine receptor and CD4 behave as coreceptors for cell line-adapted human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and for dual-tropic HIV strains, which also use the CCR-5 coreceptor. The cell line-adapted HIV-1 strains LAI and NDK and the dual-tropic HIV-2 strain ROD were able to infect CD4 ؉ cells expressing human CXCR-4, while only LAI was able to infect cells expressing the rat homolog of CXCR-4. This strain selectivity was addressed by using human-rat CXCR-4 chimeras. All chimeras tested mediated LAI infection, but only those containing the third extracellular domain (e3) of human CXCR-4 mediated NDK and ROD infection. The e3 domain might be required for the functional interaction of NDK and ROD, but not LAI, with CXCR-4. Alternatively, LAI might also interact with e3 but in a different way. Monoclonal antibody 12G5, raised against human CXCR-4, did not stain cells expressing rat CXCR-4. Chimeric human-rat CXCR-4 allowed us to map the 12G5 epitope in the e3 domain. The ability of 12G5 to neutralize infection by certain HIV-1 and HIV-2 strains is also consistent with the role of e3 in the coreceptor activity of CXCR-4. The deletion of most of the amino-terminal extracellular domain (e1) abolished the coreceptor activity of human CXCR-4 for ROD and NDK but not for LAI. These results indicate that HIV strains have different requirements for their interaction with CXCR-4. They also suggest differences in the interaction of dual-tropic HIV with CCR-5 and CXCR-4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.