We analyze the intermittent Brownian dynamics (a succession of adsorption and bulk relocation steps) of a test particle over a single strand. We propose an analytic expression of the relocation time distribution at all times. We show that this distribution has a nontrivial heavily tailed statistics at long time with a diverging average relocation time. In order to experimentally probe this first passage statistics, we follow the intermittent Brownian dynamics of water molecules over long and stiff imogolite mineral strands, using a field cycling NMR dispersion technique. Our analytic derivation is found to be in good agreement with experimental data on a large domain of observation. Implications for the efficiency of a search strategy on a single filament are then discussed and the importance of the confinement and/or the finite size effect is emphasized.
The behaviour of water confined in an imogolite nanotube was studied by means of molecular dynamics simulations. The results of the study show an important difference between the interaction of water molecules with the internal and external surfaces of the nanotube. The analysis of the density profiles of confined molecules, of their spatial organisation, of the size of molecular clusters, of the lifetime of H-bonds in the system and of dynamical characteristics of molecules permits us to qualify the external imogolite surface as hydrophobic, whereas the internal surface reveals a hydrophilic character.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.