In contrast to peripheral nerves, central axons do not regenerate. Partial injuries to the spinal cord, however, are followed by functional recovery. We investigated the anatomical basis of this recovery and found that after incomplete spinal cord injury in rats, transected hindlimb corticospinal tract (CST) axons sprouted into the cervical gray matter to contact short and long propriospinal neurons (PSNs). Over 12 weeks, contacts with long PSNs that bridged the lesion were maintained, whereas contacts with short PSNs that did not bridge the lesion were lost. In turn, long PSNs arborize on lumbar motor neurons, creating a new intraspinal circuit relaying cortical input to its original spinal targets. We confirmed the functionality of this circuit by electrophysiological and behavioral testing before and after CST re-lesion. Retrograde transynaptic tracing confirmed its integrity, and revealed changes of cortical representation. Hence, after incomplete spinal cord injury, spontaneous extensive remodeling occurs, based on axonal sprout formation and removal. Such remodeling may be crucial for rehabilitation in humans.
Although spontaneous regeneration of lesioned fibres is limited in the adult central nervous system, many people that suffer from incomplete spinal cord injuries show significant functional recovery. This recovery process can go on for several years after the injury and probably depends on the reorganization of circuits that have been spared by the lesion. Synaptic plasticity in pre-existing pathways and the formation of new circuits through collateral sprouting of lesioned and unlesioned fibres are important components of this recovery process. These reorganization processes might occur in cortical and subcortical motor centres, in the spinal cord below the lesion, and in the spared fibre tracts that connect these centres. Functional and anatomical evidence exists that spontaneous plasticity can be potentiated by activity, as well as by specific experimental manipulations. These studies prepare the way to a better understanding of rehabilitation treatments and to the development of new approaches to treat spinal cord injury.
The adult mouse subependymal zone (SEZ) harbours neural stem cells that are thought to generate exclusively GABAergic interneurons of the olfactory bulb. Here we describe the adult generation of glutamatergic juxtaglomerular neurons, with dendritic arborizations that project into adjacent glomeruli identifying them as short-axon cells. Fate mapping revealed that these originate from Neurogenin2- and Tbr2-expressing progenitors located in the dorsal region of the SEZ. Progenitors of these glutamatergic interneurons recapitulate the sequential expression of transcription factors that hallmark glutamatergic neurogenesis in the developing cerebral cortex and adult hippocampus. Indeed, the molecular specification of these SEZ progenitors allows for their recruitment into the cerebral cortex upon lesion. Taken together, our data show that SEZ progenitors not only produce a novel population of adult-born glutamatergic juxtaglomerular neurons, but may also provide a new source of progenitors for endogenous repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.