In this paper, we explore the different minimal solutions for egomotion estimation of a camera based on homography knowing the gravity vector between calibrated images. These solutions depend on the prior knowledge about the reference plane used by the homography. We then demonstrate that the number of matched points can vary from two to three and that a direct closed-form solution or a Gröbner basis based solution can be derived according to this plane. Many experimental results on synthetic and real sequences in indoor and outdoor environments show the efficiency and the robustness of our approach compared to standard methods.
Given a picture taken somewhere in the world, automatic geo-localization of such an image is an extremely useful task especially for historical and forensic sciences, documentation purposes, organization of the world's photographs and intelligence applications. While tremendous progress has been made over the last years in visual location recognition within a single city, localization in natural environments is much more difficult, since vegetation, illumination, seasonal changes make appearance-only approaches impractical. In this work, we target mountainous terrain and use digital elevation models to extract representations for fast visual database lookup. We propose an automated approach for very large scale visual localization that can efficiently exploit visual information (contours) and geometric constraints (consistent orientation) at the same time. We validate the system at the scale of Switzerland (40,000 km 2 ) using Communicated by over 1000 landscape query images with ground truth GPS position.
A huge fraction of cameras used nowadays is based on CMOS sensors with a rolling shutter that exposes the image line by line. For dynamic scenes/cameras this introduces undesired effects like stretch, shear and wobble. It has been shown earlier that rotational shake induced rolling shutter effects in hand-held cell phone capture can be compensated based on an estimate of the camera rotation. In contrast, we analyse the case of significant camera motion, e.g. where a bypassing streetlevel capture vehicle uses a rolling shutter camera in a 3D reconstruction framework. The introduced error is depth dependent and cannot be compensated based on camera motion/rotation alone, invalidating also rectification for stereo camera systems. On top, significant lens distortion as often present in wide angle cameras intertwines with rolling shutter effects as it changes the time at which a certain 3D point is seen. We show that naive 3D reconstructions (assuming global shutter) will deliver biased geometry already for very mild assumptions on vehicle speed and resolution. We then develop rolling shutter dense multiview stereo algorithms that solve for time of exposure and depth at the same time, even in the presence of lens distortion and perform an evaluation on ground truth laser scan models as well as on real street-level data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.