Aging is often associated with changes in brain structures as well as in cognitive functions. Structural changes can be visualized with Magnetic Resonance Imaging (MRI) using voxel-based grey matter morphometry (VBM) and visual rating scales to assess atrophy level. Several MRI studies have shown that possible neural correlates of cognitive changes can be seen in normal aging. It is still not fully understood how cognitive function as measured by tests and demographic factors are related to brain changes in the MRI. We recruited 55 healthy elderly subjects aged 50–79 years. A battery of cognitive tests was administered to all subjects prior to MRI scanning. Our aim was to assess correlations between age, sex, education, cognitive test performance, and the said two MRI-based measures. Our results show significant differences in VBM grey matter volume for education level (≤ 12 vs. > 12 years), with a smaller amount of grey matter volume in subjects with lower educational levels, and for age in interaction with education, indicating larger grey matter volume for young, higher educated adults. Also, grey matter volume was found to be correlated with working memory function (Digit Span Backward). Furthermore, significant positive correlations were found between visual ratings and both age and education, showing larger atrophy levels with increasing age and decreasing level of education. These findings provide supportive evidence that MRI-VBM detects structural differences for education level, and correlates with educational level and age, and working memory task performance.
The aim of this study was to compare dose and image quality (IQ) of a baseline low-dose computed tomography (CT) (fix mAs) vs. an ultra-low-dose CT (automatic tube current modulation, ATCM) in patients with suspected urinary stone disease and to assess the added value of iterative reconstruction. CT examination was performed on 193 patients (103 baseline low-dose, 90 ultra-low-dose). Filtered back projection (FBP) was used for both protocols, and Sinogram Affirmed Iterative Reconstruction (SAFIRE) was used for the ultra-low-dose protocol only. Dose and ureter stones information were collected for both protocols. Subjective IQ was assessed by two radiologists scoring noise, visibility of the ureter and overall IQ. Objective IQ (contrast-to-noise ratio, CNR) was assessed for the ultra-low-dose protocol only (FBP and SAFIRE). The ultra-low-dose protocol (ATCM) showed a 22% decrease in mean effective dose (p < 0.001) and improved visibility of the pelvic ureter (p = 0.02). CNR was higher for SAFIRE (p < 0.0001). SAFIRE improves the objective IQ, but not the subjective IQ for the chosen clinical task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.