Abstract-Liquid crystal polymer (LCP) is a material that has gained attention as a potential high-performance microwave substrate and packaging material. This investigation uses several methods to determine the electrical properties of LCP for millimeter-wave frequencies. Microstrip ring resonators and cavity resonators are measured in order to characterize the dielectric constant ( ) and loss tangent (tan ) of LCP above 30 GHz. The measured dielectric constant is shown to be steady near 3.16, and the loss tangent stays below 0.0049. In addition, various transmission lines are fabricated on different LCP substrate thicknesses and the loss characteristics are given in decibels per centimeter from 2 to 110 GHz. Peak transmission-line losses at 110 GHz vary between 0.88-2.55 dB/cm, depending on the line type and geometry. These results show, for the first time, that LCP has excellent dielectric properties for applications extending through millimeter-wave frequencies.
This paper presents the feasibility of a fully inkjet-printed, microwave flexible gas sensor based on a resonant electromagnetic transducer in microstrip technology and the impact of the printing process that affects the characteristics of the gas sensor. The sensor is fabricated using silver ink and multi-wall carbon nanotubes (MWCNTs) embedded in poly (3,4-ethylenedioxythiophene) polystyrene (PEDOT: PSS-MWCNTs) as sensitive material for Volatile Organic Compounds (VOCs) detection. Particular attention is paid to the characterization of the printed materials and the paper substrate. The manufacturing process results in a change in relative permittivity of the paper substrate by nearly 20%. Electrical characterization, made in the presence of gas, validates our theoretical approach and the radiofrequency (RF) gas sensor proof of concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.