Sodium alginate and tannic acid are natural compounds that can be mixed with each other. In this study, we propose novel eco-friendly hydrogels for biomedical applications. Thus, we conducted the following assessments including (i) observation of the structure of hydrogels by scanning electron microscope; (ii) bioerosion and the concentration of released tannic acid from subjected material; (iii) dehydrogenase activity assay to determine antibacterial activity of prepared hydrogels; and (iv) blood and cell compatibility. The results showed that hydrogels based on sodium alginate/tannic acid exert a porous structure. The immersion in simulated body fluid (SBF) results in the biomineralization process occurring on their surface while the bioerosion studies revealed that the addition of tannic acid improves hydrogels’ stability proportional to its concentration. Besides, tannic acid release concentration depends on the type of hydrogels and the highest amount was noticed for those based on sodium alginate with the content of 30% tannic acid. Antibacterial activity of hydrogels was proven for both Gram-negative and Gram-positive bacteria, the hemolysis rate was below 5% and the viability of the cells was elevated with an increasing amount of tannic acid in hydrogels. Collectively, we assume that obtained materials make the imperative to consider them for biomedical applications.
The interests in the biomedical impact of tannic acid (TA) targeting production of various types of biomaterials, such as digital microfluids, chemical sensors, wound dressings, or bioimplants constantly increase. Despite the significant disadvantage of materials obtained from natural-based compounds and their low stability and fragility, therefore, there is an imperative need to improve materials properties by addition of stabilizing formulas. In this study, we performed assessments of thin films over TA proposed as a cross-linker to be used in combination with polymeric matrix based on chitosan (CTS), i.e. CTS/TA at 80:20 or CTS/TA at 50:50 and poly(ethylene glycol) (PEG) at the concentration of 10% or 20%. We evaluated their mechanical parameters as well as the cytotoxicity assay for human bone marrow mesenchymal stem cells, human melanotic melanoma (MNT-1), and human osteosarcoma (Saos-2). The results revealed significant differences in dose-dependent of PEG regarding the maximum tensile strength (σmax) or impact on the metabolic activity of tissue culture plastic. We observed that PEG improved mechanical parameters prominently, decreased the hemolysis rate, and did not affect cell viability negatively. Enclosed data, confirmed also by our previous reports, will undoubtedly pave the path for the future application of tannic acid-based biomaterials to treat wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.