Summary Polymorphisms of IL-1β are associated with an increased risk of solid malignancies. Here, we show that stomach-specific expression of human IL-1β in transgenic mice leads to spontaneous gastric inflammation and cancer that correlates with early recruitment of myeloid-derived suppressor cells (MDSCs) to the stomach. IL-1β activates MDSC in vitro and in vivo through an IL-1RI/NF-κB pathway. IL-1β transgenic mice deficient in T and B lymphocytes develop gastric dysplasia accompanied by a marked increase in MDSCs in the stomach. Antagonism of IL-1 receptor signaling inhibited the development of gastric preneoplasia and suppressed MDSC mobilization. These results demonstrate that pathologic elevation of a single proinflammatory cytokine may be sufficient to induce neoplasia and provide a direct link between IL-1β, MDSCs and carcinogenesis.
Tumor cells secreting IL-1β are invasive and metastatic, more than the parental line or control mock-transfected cells, and concomitantly induce in mice general immune suppression of T cell responses. Suppression strongly correlates with accumulation in the peripheral blood and spleen of CD11b+/Gr-1+ immature myeloid cells and hematological alterations, such as splenomegaly, leukocytosis, and anemia. Resection of large tumors of IL-1β-secreting cells restored immune reactivity and hematological alterations within 7–10 days. Treatment of tumor-bearing mice with the physiological inhibitor of IL-1, the IL-1R antagonist, reduced tumor growth and attenuated the hematological alterations. Depletion of CD11b+/Gr-1+ immature myeloid cells from splenocytes of tumor-bearing mice abrogated suppression. Despite tumor-mediated suppression, resection of large tumors of IL-1β-secreting cells, followed by a challenge with the wild-type parental cells, induced resistance in mice; protection was not observed in mice bearing tumors of mock-transfected fibrosarcoma cells. Altogether, we show in this study that tumor-derived IL-1β, in addition to its proinflammatory effects on tumor invasiveness, induces in the host hematological alterations and tumor-mediated suppression. Furthermore, the antitumor effectiveness of the IL-1R antagonist was also shown to encompass restoration of hematological alterations, in addition to its favorable effects on tumor invasiveness and angiogenesis that have previously been described by us.
In this study, we show that distinct compartmentalization patterns of the IL-1 molecules (IL-1α and IL-1β), in the milieu of tumor cells that produce them, differentially affect the malignant process. Active forms of IL-1, namely precursor IL-1α (pIL-1α), mature IL-1β (mIL-1β), and mIL-1β fused to a signal sequence (ssIL-1β), were transfected into an established fibrosarcoma cell line, and tumorigenicity and antitumor immunity were assessed. Cell lines transfected with pIL-1α, which expresses IL-1α on the membrane, fail to develop local tumors and activate antitumor effector mechanisms, such as CTLs, NK cells, and high levels of IFN-γ production. Cells transfected with secretable IL-1β (mIL-1β and ssIL-1β) were more aggressive than wild-type and mock-transfected tumor cells; ssIL-1β transfectants even exhibited metastatic tumors in the lungs of mice after i.v. inoculation (experimental metastasis). In IL-1β tumors, increased vascularity patterns were observed. No detectable antitumor effector mechanisms were observed in spleens of mice injected with IL-1β transfectants, mock-transfected or wild-type fibrosarcoma cells. Moreover, in spleens of mice injected with IL-1β transfectants, suppression of polyclonal mitogenic responses (proliferation, IFN-γ and IL-2 production) to Con A was observed, suggesting the development of general anergy. Histologically, infiltrating mononuclear cells penetrating the tumor were seen at pIL-1α tumor sites, whereas in mIL-1β and ssIL-1β tumor sites such infiltrating cells do not penetrate inside the tumor. This is, to our knowledge, the first report on differential, nonredundant, in vivo effects of IL-1α and IL-1β in malignant processes; IL-1α reduces tumorigenicity by inducing antitumor immunity, whereas IL-1β promotes invasiveness, including tumor angiogenesis, and also induces immune suppression in the host.
Summary Expression of the lymph node homing and CC‐chemokine receptor 7 (CCR7), with L‐selectin (CD62L), has been shown to divide human memory T cells into two functionally distinct subsets. We generated a polyclonal antibody against murine CCR7 and used this antibody to study CCR7 expression on murine T‐cell subsets. Using flow cytometric staining of T cells for visualisation expression of CCR7 in association with CD62L and CD44, a major population of CD4 or CD8 T cells expressing CCR7 were found to be CD62Lhigh CD44low, which would suggest a naïve cell phenotype. By analogy with human studies, memory cells could be subdivided into CCR7high CD62Lhigh CD44high (central memory) and CCR7low CD62Llow CD44high (effector memory). The proportions of these populations were different in lymph node, blood and spleen. Functional, short‐term in vitro polyclonal stimulation of blood, spleen and lymph node cells from naive mice demonstrated that CCR7high CD4 T cells produced predominantly interleukin (IL)‐2, whereas CCR7low CD4 T cells produced both IL‐2 and interferon‐γ (IFN‐γ). However, in contrast to previously published reports, the CCR7high CD8 T‐cell subpopulation produced both IFN‐γ and IL‐2. Analysis of effector T cells, induced by immunization in vivo, showed that a proportion of activated naïve CD4 T cells down‐regulated CCR7 only after multiple cell divisions, and this coincided with the down‐regulation of CD62L and production of IL‐4 and IFN‐γ. Finally, analysis of effector T cells during the phase of maximal clonal expansion of secondary immune responses in vivo indicated that the vast majority of both IL‐2‐ and IFN‐γ‐producing cells are CCR7low, while few cytokine‐expressing CCR7high T cells were detected. Our results support the hypothesis, developed from studies with human cells, that CCR7 may separate functionally different murine memory T‐cell subpopulations, but indicate additional complexity in that CCR7high CD8 T cells also may produce IFN‐γ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.