Cyclin E, one of the activators of the cyclin-dependent kinase Cdk2, is expressed near the G1-S phase transition and is thought to be critical for the initiation of DNA replication and other S-phase functions. Accumulation of cyclin E at the G1-S boundary is achieved by periodic transcription coupled with regulated proteolysis linked to autophosphorylation of cyclin E. The proper timing and amplitude of cyclin E expression seem to be important, because elevated levels of cyclin E have been associated with a variety of malignancies and constitutive expression of cyclin E leads to genomic instability. Here we show that turnover of phosphorylated cyclin E depends on an SCF-type protein-ubiquitin ligase that contains the human homologue of yeast Cdc4, which is an F-box protein containing repeated sequences of WD40 (a unit containing about 40 residues with tryptophan (W) and aspartic acid (D) at defined positions). The gene encoding hCdc4 was found to be mutated in a cell line derived from breast cancer that expressed extremely high levels of cyclin E.
The ubiquitin-proteasome system is a major regulatory pathway of protein degradation and plays an important role in cellular division. Fbxw7 (or hCdc4), a member of the F-box family of proteins, which are substrate recognition components of the multisubunit ubiquitin ligase SCF (Skp1-Cdc53/ Cullin-F-box-protein), has been shown to mediate the ubiquitin-dependent proteolysis of several oncoproteins including cyclin E1, c-Myc, c-Jun, and Notch. The oncogenic potential of Fbxw7 substrates, frequent allelic loss in human cancers, and demonstration that mutation of FBXW7 cooperates with p53 in mouse tumorigenesis have suggested that Fbxw7 could function as a tumor suppressor in human cancer. Here, we carry out an extensive genetic screen of primary tumors to evaluate the role of FBXW7 as a tumor suppressor in human tumorigenesis. Our results indicate that FBXW7 is inactivated by mutation in diverse human cancer types with an overall mutation frequency of f6%. The highest mutation frequencies were found in tumors of the bile duct (cholangiocarcinomas, 35%), blood (T-cell acute lymphocytic leukemia, 31%), endometrium (9%), colon (9%), and stomach (6%). Approximately 43% of all mutations occur at two mutational ''hotspots,'' which alter Arg residues (Arg 465 and Arg 479 ) that are critical for substrate recognition. Furthermore, we show that Fbxw7Arg465 hotspot mutant can abrogate wild-type Fbxw7 function through a dominant negative mechanism. Our study is the first comprehensive screen of FBXW7 mutations in various human malignancies and shows that FBXW7 is a general tumor suppressor in human cancer.
Eukaryotic cells require iron for survival and have developed regulatory mechanisms for maintaining appropriate intracellular iron concentrations. The degradation of iron regulatory protein 2 (IRP2) in iron-replete cells is a key event in this pathway, but the E3 ubiquitin ligase responsible for its proteolysis has remained elusive. We found that a SKP1-CUL1-FBXL5 ubiquitin ligase protein complex associates with and promotes the iron-dependent ubiquitination and degradation of IRP2. The F-box substrate adaptor protein FBXL5 was degraded upon iron and oxygen depletion in a process that required an iron-binding hemerythrin-like domain in its N terminus. Thus, iron homeostasis is regulated by a proteolytic pathway that couples IRP2 degradation to intracellular iron levels through the stability and activity of FBXL5.
Interferon alpha (IFNa) has been used in the treatment of several types of cancer for almost 30 years, yet the mechanism(s) responsible for its anti-tumoral action remains unknown. A variety of cellular responses, including inhibition of cell growth and induction of apoptosis are induced by IFNs, and apoptotic induction by this cytokine has been proposed to be of importance for both its anti-tumoral in addition to its anti-viral responses. The aim of the present study was to delineate the pathways activated during IFNa-induced apoptosis in malignant cell lines. We found that apoptosis induced by IFNa was associated with activation of caspases-1, -2, -3, -8 and -9 and that this activation was a critical event. Caspase-3 activation was dependent on activity of caspases-8 and -9, moreover, activation of caspase-8 seems to be the upstream event in IFNa-induced caspase cascade. We also found loss of mitochondrial membrane potential as well as release of cytochrome c post IFNtreatment, clearly implicating the involvement of mitochondria in IFN-mediated apoptosis. Furthermore, IFNa-induced apoptosis was found to be independent on interactions between the Fas-receptor and its ligand. These studies form the basis for further investigations aiming to improve IFN therapy and the development of future strategies to overcome the IFN resistance observed in some malignancies.
Notch signaling is of crucial importance in normal T-cell development and Notch 1 is frequently mutated in T-cell acute lymphoblastic leukemias (T-ALL), leading to aberrantly high Notch signaling. In this report, we determine whether T-ALL mutations occur not only in Notch1 but also in the F-box protein hCdc4 (Sel-10, Ago, or Fbxw7), a negative regulator of Notch1. We show that the hCDC4 gene is mutated in leukemic cells from more than 30% of patients with pediatric T-ALL and derived cell lines. Most hCDC4 mutations found were missense substitutions at critical arginine residues (Arg 465 , Arg 479 , and Arg 505 ) localized in the substrate-binding region of hCdc4. Cells inactivated for hCdc4 and T-ALL cells containing hCDC4 mutations exhibited an increased Notch1 protein half-life, consistent with the proposed role of hCdc4 in ubiquitindependent proteolysis of Notch1. Furthermore, restoration of wild-type but not mutant hCdc4 in HCT 116 hCDC4-negative cells led to an increased Notch1 ubiquitylation and decreased Notch1 signaling. These results show that hCdc4 mutations interfere with normal Notch1 regulation in vivo. Finally, we found that mutations in hCDC4 and NOTCH1 can occur in the same cancers and that patients carrying hCDC4 and/or NOTCH1 mutations have a favorable overall survival. Collectively, these data show that mutation of hCDC4 is a frequent event in T-ALL and suggest that hCDC4 mutations and gainof-function mutations in NOTCH1 might synergize in contributing to the development of pediatric T-ALL leukemogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.