Cyclin E, one of the activators of the cyclin-dependent kinase Cdk2, is expressed near the G1-S phase transition and is thought to be critical for the initiation of DNA replication and other S-phase functions. Accumulation of cyclin E at the G1-S boundary is achieved by periodic transcription coupled with regulated proteolysis linked to autophosphorylation of cyclin E. The proper timing and amplitude of cyclin E expression seem to be important, because elevated levels of cyclin E have been associated with a variety of malignancies and constitutive expression of cyclin E leads to genomic instability. Here we show that turnover of phosphorylated cyclin E depends on an SCF-type protein-ubiquitin ligase that contains the human homologue of yeast Cdc4, which is an F-box protein containing repeated sequences of WD40 (a unit containing about 40 residues with tryptophan (W) and aspartic acid (D) at defined positions). The gene encoding hCdc4 was found to be mutated in a cell line derived from breast cancer that expressed extremely high levels of cyclin E.
Spinal muscular atrophies (SMA, also known as hereditary motor neuropathies) and hereditary motor and sensory neuropathies (HMSN) are clinically and genetically heterogeneous disorders of the peripheral nervous system. Here we report that mutations in the TRPV4 gene cause congenital © 2009 Nature America, Inc. All rights reserved.Correspondence should be addressed to M.A.-G. (michaela.auergrumbach@medunigraz.at).. METHODS: Methods and any associated references are available in the online version of the paper at http://www.nature.com/ naturegenetics/. Accession codes. GenBank: human TRPV4 cDNA, NM_021625; human TRPV4, NP_067638 IsoA. Pfam: ankyrin repeat, PF00023.Note: Supplementary information is available on the Nature Genetics website. AUTHOR CONTRIBUTIONS: M.A.-G., S.U., J.S., M.E.M., A.H.C., K.J.D., C.M.A.v.R.-A., N.E.A., H.L., B.S.-W., R.P., C.L., G.W.P., H.J.S., H.K. and T.R.P. recruited the study participants, acquired clinical data, conducted neurological and neurophysiological evaluations and performed linkage analysis. M.A.-G, C.G., L.P. and C.F. carried out the Affymetrix array linkage studies and identified the mutations. A.O., Z.B. and B.T. designed, carried out and analyzed the electrophysiological and Ca 2+ -imaging studies. E.F. conducted immunofluorescence and immunohistochemistry studies. H.S. conducted fluorescence-activated cell sorting (FACS) and biotinylation studies. A.K. performed structural biology and biocomputing analyses. A.H.C., M.E.M. and H.K. participated in the data analysis and reviewed the manuscript. M.A.-G. and C.G. analyzed the data, designed and supervised the study and wrote the manuscript. Supplementary Fig. 1) and observed linkage to three chromosomal regions with log 10 of odds (lod) scores >2 for several SNP markers, including the chromosome 12q23-24 region (data not shown). We constructed haplotypes by including additional distantly related family members (right branch of the pedigree; Supplementary Fig. 1). The genetic interval transmitted with the disease resides between SNPs rs2374688 and rs35426 (Chr. 12: 106,197,054,429 bp; Supplementary Table 1) and overlaps with the intervals reported for risk of congenital distal SMA, SPSMA and HMSN2C 2-4 . Europe PMC Funders GroupIn an affected individual from family FAM_1, we began sequencing all protein-coding exons and exon-intron boundaries of 19 genes but initially observed only known SNPs (Supplementary Table 2). However, sequencing of all protein-coding exons of TRPV4 (transient receptor potential vanilloid 4; chr. 12: 108,705,277-108,755,595; reverse strand) revealed a heterozygous C-to-T nucleotide change at position 943 in exon 6 (Supplementary Fig. 2a), which is predicted to cause the substitution of arginine with tryptophan at position 315 of TRPV4 (R315W). We then screened DNA samples from additional families showing one of the phenotypes described above, including two families previously reported 1,3,4 . All affected individuals from the chromosome 12q23-24-linked family (here called FAM_2) described by...
The Cks/Suc1 proteins associate with CDK/cyclin complexes, but their precise function(s) is not well defined. Here we demonstrate that Cks1 directs the ubiquitin-mediated proteolysis of the CDK-bound substrate p27Kip1 by the protein ubiquitin ligase (E3) SCF(Skp2). Cks1 associates with the F box protein Skp2 and is essential for recognition of the p27Kip1 substrate for ubiquitination in vivo and in vitro. Using purified recombinant proteins, we reconstituted p27Kip1 ubiquitination activity and show that it is dependent on Cks1. CKS1-/- mice are abnormally small, and cells derived from them proliferate poorly, particularly under limiting mitogen conditions, possibly due to elevated levels of p27Kip1.
To elucidate the molecular action of 8-methoxypsoralen plus UVA (PUVA), a standard dermatological therapy, we used K5.hTGF-β1 transgenic mice exhibiting a skin phenotype and cytokine abnormalities with strong similarities to human psoriasis. We observed that impaired function of CD4+CD25+ regulatory T cells (Tregs) and increased cytokine levels of the IL-23/Th17 pathway were responsible for the psoriatic phenotype in this mouse model. Treatment of K5.hTGF-β1 transgenic mice with PUVA suppressed the IL-23/Th17 pathway, Th1 milieu, as well as transcription factors STAT3 and orphan nuclear receptor RORγt. PUVA induced the Th2 pathway and IL-10–producing CD4+CD25+Foxp3+Tregs with disease-suppressive activity that was abolished by anti-CTLA4 mAb treatment. These findings were paralleled by macroscopic and microscopic clearance of the diseased murine skin. Anti–IL-17 mAb treatment also diminished the psoriatic phenotype of the mice. This indicated that both induced Tregs involving CTLA4 signaling and inhibition of the IL-23/Th17 axis are central for the therapeutic action of PUVA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.