Gnetum (Gnetales: Gnetaceae) constitutes an evolutionarily isolated gymnosperm clade, comprising about 40 species that inhabit tropical areas of the world. While its closest living relative, the monotypic Welwitschia, has a well-documented fossil record from the Early Cretaceous, Gnetum-like fossils are rare and poorly understood. The phylogeny of Gnetum has been studied previously but the distant relationship to outgroups and the difficulty of obtaining plant material mean it is not yet fully resolved. Most species are tropical lianas with an angiospermous vegetative habit that are difficult to find and identify. Here a new phylogeny is presented based on nuclear and chloroplast data from 58 Gnetum accessions, representing 27 putative species, and outgroup information from other seed plants. The results provide support for South American species being sister to the remaining species. The two African species constitute a monophyletic group, sister to an Asian clade, within which the two arborescent species of the genus are the earliest diverging. Estimated divergence times indicate, in contrast with previous results, that the major lineages of Gnetum diverged in the Late Cretaceous. This result is obtained regardless of tree prior used in the BEAST analyses (Yule or birth-death). Together these findings suggest a correlation between early divergence events in extant Gnetum and the breakup of Gondwana in the Cretaceous. Compared to the old stem ages of major subclades of Gnetum, crown nodes date to the Cenozoic: the Asian crown group dates to the Cretaceous-Paleogene (K-Pg) boundary, the African crown group to the mid-Paleogene, and the South American crown group to the Paleogene-Neogene boundary. Although dispersal must have contributed to the current distribution of Gnetum, e.g., within South America and from Southeast Asian islands to the East Asian mainland, dispersal has apparently not occurred across major oceans, at least not during the Cenozoic.
Subfamily Rubioideae is the largest of the main lineages in the coffee family (Rubiaceae), with over 8,000 species and 29 tribes. Phylogenetic relationships among tribes and other major clades within this group of plants are still only partly resolved despite considerable efforts. While previous studies have mainly utilized data from the organellar genomes and nuclear ribosomal DNA, we here use a large number of low-copy nuclear genes obtained via a target capture approach to infer phylogenetic relationships within Rubioideae. We included 101 Rubioideae species representing all but two (the monogeneric tribes Foonchewieae and Aitchinsonieae) of the currently recognized tribes, and all but one non-monogeneric tribe were represented by more than one genus. Using data from the 353 genes targeted with the universal Angiosperms353 probe set we investigated the impact of data type, analytical approach, and potential paralogs on phylogenetic reconstruction. We inferred a robust phylogenetic hypothesis of Rubioideae with the vast majority (or all) nodes being highly supported across all analyses and datasets and few incongruences between the inferred topologies. The results were similar to those of previous studies but novel relationships were also identified. We found that supercontigs [coding sequence (CDS) + non-coding sequence] clearly outperformed CDS data in levels of support and gene tree congruence. The full datasets (353 genes) outperformed the datasets with potentially paralogous genes removed (186 genes) in levels of support but increased gene tree incongruence slightly. The pattern of gene tree conflict at short internal branches were often consistent with high levels of incomplete lineage sorting (ILS) due to rapid speciation in the group. While concatenation- and coalescence-based trees mainly agreed, the observed phylogenetic discordance between the two approaches may be best explained by their differences in accounting for ILS. The use of target capture data greatly improved our confidence and understanding of the Rubioideae phylogeny, highlighted by the increased support for previously uncertain relationships and the increased possibility to explore sources of underlying phylogenetic discordance.
Rock-inhabiting fungi harbour species-rich, poorly differentiated, extremophilic taxa of polyphyletic origin. Their closest relatives are often well-known species from various biotopes with significant pathogenic potential. Speleothems represent a unique rock-dwelling habitat, whose mycobiota are largely unexplored. Isolation of fungi from speleothem biofilm covering bare granite walls in the Kungsträdgården metro station in Stockholm yielded axenic cultures of two distinct black yeast morphotypes. Phylogenetic analyses of DNA sequences from six nuclear loci, ITS, nuc18S and nuc28S rDNA, rpb1, rpb2 and β-tubulin, support their placement in the Chaetothyriales (Ascomycota). They are described as a new genus Bacillicladium with the type species B. lobatum, and a new species Bradymyces graniticola. Bacillicladium is distantly related to the known five chaetothyrialean families and is unique in the Chaetothyriales by variable morphology showing hyphal, meristematic and yeast-like growth in vitro. The nearest relatives of Bacillicladium are recruited among fungi isolated from cardboard-like construction material produced by arboricolous non-attine ants. Their sister relationship is weakly supported by the Maximum likelihood analysis, but strongly supported by Bayesian inference. The genus Bradymyces is placed amidst members of the Trichomeriaceae and is ecologically undefined; it includes an opportunistic animal pathogen while two other species inhabit rock surfaces. ITS rDNA sequences of three species accepted in Bradymyces and other undescribed species and environmental samples were subjected to phylogenetic analysis and in-depth comparative analysis of ITS1 and ITS2 secondary structures in order to study their intraspecific variability. Compensatory base change criterion in the ITS2 secondary structure supported delimitation of species in Bradymyces, which manifest a limited number of phenotypic features useful for species recognition. The role of fungi in the speleothem biofilm and relationships of Bacillicladium and Bradymyces with other members of the Chaetothyriales are discussed.
Knowledge of relationships among plants has improved dramatically but for many groups, it still rests solely on information from the plastid genome. Consequently, only parts of the organisms’ evolutionary history are revealed. For the ancient gymnosperms of Ephedra (Gnetales), previous conclusions were based on both plastid and nuclear ribosomal DNA data, but results were typically poorly resolved and supported, presumably because of information poverty in the utilized gene regions. With the aim of resolving phylogenetic questions using more data, we sequenced the plastid genome and the nuclear ribosomal cistron for 50 specimens of Ephedra, largely covering the diversity of the genus. Phylogeny and node ages were estimated using maximum likelihood and Bayesian methods. However, instead of clarifying a few remaining uncertainties, we were left with new questions and incongruent results. Age estimates of the crown group of Ephedra vary considerably depending on utilized software and specified tree prior. Furthermore, previous estimates of the phylogeny of Ephedra have largely reflected information from nrITS, despite utilization of plastid gene regions as well. With analyses based on the entire plastid genome, completely new results emerge. Earlier conclusions of deep divergences in the genus are not supported, and there are ample examples of phylogenetic incongruence. Our study overturns conclusions in previous work and highlights that we still know fairly little about evolution in the ancient Ephedra lineage. How many species of Ephedra are there, and how are they related? How old is the crown group? Many species appear affected by a history of hybridization/introgression and/or polyploidy, but other processes may result in similar patterns and reasons for the detected incongruences must be further analyzed, preferably using population‐level sampling and low‐copy nuclear data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.