Reactive oxygen species (ROS) are formed by myeloid cells as a defense strategy against microorganisms. ROS however also trigger poly(ADP-ribose) polymerase 1- (PARP-1) dependent cell death (parthanatos) in adjacent lymphocytes, which has been forwarded as a mechanism of immune escape in several forms of cancer. The present study assessed the role of mitogen-activated protein kinases (MAPKs), in particular the extracellular signal-regulated kinase (ERK), in ROS-induced signal transduction leading to lymphocyte parthanatos. We report that inhibitors of ERK1/2 phosphorylation upheld natural killer (NK) cell-mediated cytotoxicity under conditions of oxidative stress and rescued NK cells and CD8+ T lymphocytes from cell death induced by ROS-producing monocytes. ERK1/2 phosphorylation inhibition also protected lymphocytes from cell death induced by exogenous hydrogen peroxide (H2O2) and from ROS generated by xanthine oxidase or glucose oxidase. Phosphorylation of ERK1/2 was observed in lymphocytes shortly after exposure to ROS. ROS-generating myeloid cells and exogenous H2O2 triggered PARP 1-dependent accumulation of poly ADP-ribose (PAR), which was prevented by ERK pathway inhibitors. ERK1/2 phosphorylation was induced by ROS independently of PARP-1. Our findings are suggestive of a role for ERK1/2 in ROS-induced lymphocyte parthanatos, and that the ERK axis may provide a therapeutic target for the protection of lymphocytes against oxidative stress.
Interactions between killer-immunoglobulin-like receptors (KIRs) and their HLA class I ligands are instrumental in natural killer (NK) cell regulation and protect normal tissue from NK cell attack. Human KIR haplotypes comprise genes encoding mainly inhibitory receptors (KIR A) or activating and inhibitory receptors (KIR B). A substantial fraction of humans lack ligands for inhibitory KIRs (iKIRs), that is, a ‘missing ligand’ genotype. KIR B/x and missing ligand genotypes may thus give rise to potentially autoreactive, unlicensed NK cells. Little is known regarding the impact of such genotypes in untransplanted acute myeloid leukemia (AML). For this study, NK cell phenotypes and KIR/HLA genotypes were determined in 81 AML patients who received immunotherapy with histamine dihydrochloride and low-dose IL-2 for relapse prevention (NCT01347996). We observed that presence of unlicensed NK cells impacted favorably on clinical outcome, in particular among patients harboring functional NK cells reflected by high expression of the natural cytotoxicity receptor (NCR) NKp46. Genotype analyses suggested that the clinical benefit of high NCR expression was restricted to patients with a missing ligand genotype and/or a KIR B/x genotype. These data imply that functional NK cells are significant anti-leukemic effector cells in patients with KIR/HLA genotypes that favor NK cell autoreactivity.
The antibody-dependent cellular cytotoxicity (ADCC) of natural killer (NK) cells is assumed to contribute to the clinical efficacy of monoclonal antibodies (mAbs) in chronic lymphocytic leukemia (CLL) and other hematopoietic malignancies of B cell origin. We sought to determine whether reactive oxygen species (ROS)-producing monocytes regulate the ADCC of NK cells against primary CLL cells using anti-CD20 as the linking antibody. The monoclonal CD20 antibodies rituximab and ofatumumab were found to trigger substantial release of ROS from monocytes. Antibody-exposed monocytes induced NK cell apoptosis and restricted NK cell-mediated ADCC against autologous CLL cells. The presence of inhibitors of ROS formation and scavengers of ROS preserved NK cell viability and restored NK cell-mediated ADCC against primary CLL cells. We propose that limiting the antibody-induced induction of immunosuppressive ROS may improve the anti-leukemic efficacy of anti-CD20 therapy in CLL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.