The proliferation of sensors to capture parametric measures or event data over a myriad of networking topologies is growing exponentially to improve our daily lives. Large amounts of data must be shared on constrained network infrastructure, increasing delays and loss of valuable real-time information. Our research presents a solution for the health, security, safety, and fire domains to obtain temporally synchronous, credible and high-resolution data from sensors to maintain the temporal hierarchy of reported events. We developed a multisensor fusion framework with energy conservation via domain-specific “wake up” triggers that turn on low-power model-driven microcontrollers using machine learning (TinyML) models. We investigated optimisation techniques using anomaly detection modes to deliver real-time insights in demanding life-saving situations. Using energy-efficient methods to analyse sensor data at the point of creation, we facilitated a pathway to provide sensor customisation at the “edge”, where and when it is most needed. We present the application and generalised results in a real-life health care scenario and explain its application and benefits in other named researched domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.