We study random compositions of transformations having certain uniform fiberwise properties and prove bounds which in combination with other results yield a quenched central limit theorem equipped with a convergence rate, also in the multivariate case, assuming fiberwise centering. For the most part we work with non-stationary randomness and non-invariant, non-product measures. Independently, we believe our work sheds light on the mechanisms that make quenched central limit theorems work, by dissecting the problem into three separate parts.
We present an adaptation of Stein's method of normal approximation to the study of both discrete-and continuous-time dynamical systems. We obtain new correlation-decay conditions on dynamical systems for a multivariate central limit theorem augmented by a rate of convergence. We then present a scheme for checking these conditions in actual examples. The principal contribution of our paper is the method, which yields a convergence rate essentially with the same amount of work as the central limit theorem, together with a multiplicative constant that can be computed directly from the assumptions.
We study dynamical systems arising as time-dependent compositions of Pomeau-Manneville-type intermittent maps. We establish central limit theorems for appropriately scaled and centered Birkhoff-like partial sums, with estimates on the rate of convergence. For maps chosen from a certain parameter range, but without additional assumptions on how the maps vary with time, we obtain a self-norming CLT provided that the variances of the partial sums grow sufficiently fast. When the maps are chosen randomly according to a shift-invariant probability measure, we identify conditions under which the quenched CLT holds, assuming fiberwise centering. Finally, we show a multivariate CLT for intermittent quasistatic systems. Our approach is based on Stein's method of normal approximation.Acknowledgements. The authors would like to thank Mikko Stenlund for helpful comments on preliminary versions of the manuscript.
We introduced the concept of a metric value set (MVS) in an earlier paper [2]. In this paper we study the algebraic structure of MVSs. For an MVS M we define the concept of M-metrizability of a topological space and prove some metrizability results related to those algebraic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.