Comparative genomic hybridization produces a map of DNA sequence copy number as a function of chromosomal location throughout the entire genome. Differentially labeled test DNA and normal reference DNA are hybridized simultaneously to normal chromosome spreads. The hybridization is detected with two different fluorochromes. Regions of gain or loss of DNA sequences, such as deletions, duplications, or amplifications, are seen as changes in the ratio of the intensities of the two fluorochromes along the target chromosomes. Analysis of tumor cell lines and primary bladder tumors identified 16 different regions of amplification, many in loci not previously known to be amplified.
Comparative genomic hybridization was applied to 5 breast cancer cell lHes and 33 primary tumors to discover and map regions of the genome with increased DNAsequence copy-number. Two-thirds of primary tumors and almost all cell lines showed increased DNA-sequence copynumber affecting a total of 26 chromosomal subregions. Most of these loci were distinct from those of currently known amplified genes in breast cancer, with sequences originating from 17q22-q24 and 20q13 showing the highest frequency of amplification. The results indicate that these chromosomal regions may contain previously unknown genes whose increased expression contributes to breast cancer progression.Chromosomal regions with increased copy-number often spanned tens of Mb, suggesting involvement of more than one gene in each region.Increased expression of specific genes plays an important role in the pathogenesis of solid tumors (1-3). Gene amplification, characterized by distinct cytogenetic structures, such as homogeneously stained regions, double-minute chromosomes (1-7), is commonly found in tumor cells and is considered an important mechanism by which tumor cells gain increased levels of expression of critical genes. Increased copy-numbers also occur as a result of extensive chromosomal rearrangements, such as duplications, isochromosomes, extra marker chromosomes, and acentric chromosomal fragments that may affect the gene dosage of numerous genes simultaneously. In breast cancer, cytogenetic evidence of increased DNA-sequence copy-number is common (4-7). For example, homogeneously stained regions have been found in 60% of primary breast carcinomas (7). Although genetic analysis has found amplification of oncogenes, such as ERBB2 (17q12), MYC (8q24), PRADII CYCLIN D (11q13), FLG (8p12), BEK (10q24), and IGFR-1/FES (15q24-q25) (8-12), in most cases these do not explain the presence of large homogeneously stained regions (13). Thus, amplification of currently unknown genes may often occur in breast cancer.We have recently developed a method, comparative genomic hybridization (CGH), for surveying entire genomes for DNA-sequence copy-number variation (14, 15). In CGH, the relative intensities of tumor DNA (detected using green fluorescence) and normal reference DNA (detected with red fluorescence) after hybridization to normal metaphase chromosomes is used to reveal and map regions of increased DNA-sequence copy number (14-16). These loci are visualized as chromosomal region(s) with predominantly green fluorescence ( Fig. 1) and quantified by digital image analysis as an increased green-to-red fluorescence intensity ratio (Fig. 2). As no specific probes or previous knowledge of aberrations is required, CGH is especially suitable for identification and mapping of previously unknown DNA copy-number changes that may highlight locations of important genes. In the present study, we have used CGH to identify and map increases in DNA-sequence copy number in 15 breast cancer cell lines and 33 uncultured primary breast tumors. MATERIALS AND ME...
While several prognostic factors have been identified in breast carcinoma, the clinical outcome remains hard to predict for individual patients. Better predictive markers are needed to help guide difficult treatment decisions. In a previous study of 78 breast carcinoma specimens, we noted an association between poor clinical outcome and the expression of cytokeratin 17 and/or cytokeratin 5 mRNAs. Here we describe the results of immunohistochemistry studies using monoclonal antibodies against these markers to analyze more than 600 paraffin-embedded breast tumors in tissue microarrays. We found that expression of cytokeratin 17 and/or cytokeratin 5/6 in tumor cells was associated with a poor clinical outcome. Moreover, multivariate analysis showed that in node-negative breast carcinoma, expression of these cytokeratins was a prognostic factor independent of tumor size and tumor grade.
We present an individualized systems medicine (ISM) approach to optimize cancer drug therapies one patient at a time. ISM is based on (i) molecular profi ling and ex vivo drug sensitivity and resistance testing (DSRT) of patients' cancer cells to 187 oncology drugs, (ii) clinical implementation of therapies predicted to be effective, and (iii) studying consecutive samples from the treated patients to understand the basis of resistance. Here, application of ISM to 28 samples from patients with acute myeloid leukemia (AML) uncovered fi ve major taxonomic drug-response subtypes based on DSRT profi les, some with distinct genomic features (e.g., MLL gene fusions in subgroup IV and FLT3 -ITD mutations in subgroup V). Therapy based on DSRT resulted in several clinical responses. After progression under DSRT-guided therapies, AML cells displayed signifi cant clonal evolution and novel genomic changes potentially explaining resistance, whereas ex vivo DSRT data showed resistance to the clinically applied drugs and new vulnerabilities to previously ineffective drugs. SIGNIFICANCE:Here, we demonstrate an ISM strategy to optimize safe and effective personalized cancer therapies for individual patients as well as to understand and predict disease evolution and the next line of therapy. This approach could facilitate systematic drug repositioning of approved targeted drugs as well as help to prioritize and de-risk emerging drugs for clinical testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.