Background The aim of this study was to investigate the feasibility of ischemic stroke detection from computed tomography angiography source images (CTA-SI) using three-dimensional convolutional neural networks. Methods CTA-SI of 60 patients with a suspected acute ischemic stroke of the middle cerebral artery were randomly selected for this study; 30 patients were used in the neural network training, and the subsequent testing was performed using the remaining 30 patients. The training and testing were based on manually segmented lesions. Cerebral hemispheric comparison CTA and non-contrast computed tomography (NCCT) were studied as additional input features. Results All ischemic lesions in the testing data were correctly lateralized, and a high correspondence to manual segmentations was achieved. Patients with a diagnosed stroke had clinically relevant regions labeled infarcted with a 0.93 sensitivity and 0.82 specificity. The highest achieved voxel-wise area under receiver operating characteristic curve was 0.93, and the highest Dice similarity coefficient was 0.61. When cerebral hemispheric comparison was used as an input feature, the algorithm performance improved. Only a slight effect was seen when NCCT was included. Conclusion The results support the hypothesis that an acute ischemic stroke lesion can be detected with 3D convolutional neural network-based software from CTA-SI. Utilizing information from the contralateral hemisphere appears to be beneficial for reducing false positive findings.
In stroke imaging, CT angiography (CTA) is used for detecting arterial occlusions. These images could also provide information on the extent of ischemia. The study aim was to develop and evaluate a convolutional neural network (CNN)–based algorithm for detecting and segmenting acute ischemic lesions from CTA images of patients with suspected middle cerebral artery stroke. These results were compared to volumes reported by widely used CT perfusion–based RAPID software (IschemaView). A 42-layer-deep CNN was trained on 50 CTA volumes with manually delineated targets. The lower bound for predicted lesion size to reliably discern stroke from false positives was estimated. The severity of false positives and false negatives was reviewed visually to assess the clinical applicability and to further guide the method development. The CNN model corresponded to the manual segmentations with voxel-wise sensitivity 0.54 (95% confidence interval: 0.44–0.63), precision 0.69 (0.60–0.76), and Sørensen–Dice coefficient 0.61 (0.52–0.67). Stroke/nonstroke differentiation accuracy 0.88 (0.81–0.94) was achieved when only considering the predicted lesion size (i.e., regardless of location). By visual estimation, 46% of cases showed some false findings, such as CNN highlighting chronic periventricular white matter changes or beam hardening artifacts, but only in 9% the errors were severe, translating to 0.91 accuracy. The CNN model had a moderately strong correlation to RAPID-reported Tmax > 10 s volumes (Pearson’s r = 0.76 (0.58–0.86)). The results suggest that detecting anterior circulation ischemic strokes from CTA using a CNN-based algorithm can be feasible when accompanied with physiological knowledge to rule out false positives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.