Angiogenesis, the sprouting of new blood vessels from pre‐existing ones, and the permeability of blood vessels are regulated by vascular endothelial growth factor (VEGF) via its two known receptors Flt1 (VEGFR‐1) and KDR/Flk‐1 (VEGFR‐2). The Flt4 receptor tyrosine kinase is related to the VEGF receptors, but does not bind VEGF and its expression becomes restricted mainly to lymphatic endothelia during development. In this study, we have purified the Flt4 ligand, VEGF‐C, and cloned its cDNA from human prostatic carcinoma cells. While VEGF‐C is homologous to other members of the VEGF/platelet derived growth factor (PDGF) family, its C‐terminal half contains extra cysteine‐rich motifs characteristic of a protein component of silk produced by the larval salivary glands of the midge, Chironomus tentans. VEGF‐C is proteolytically processed, binds Flt4, which we rename as VEGFR‐3 and induces tyrosine autophosphorylation of VEGFR‐3 and VEGFR‐2. In addition, VEGF‐C stimulated the migration of bovine capillary endothelial cells in collagen gel. VEGF‐C is thus a novel regulator of endothelia, and its effects may extend beyond the lymphatic system, where Flt4 is expressed.
The recently identified vascular endothelial growth factor C (VEGF-C) belongs to the platelet-derived growth factor (PDGF)/VEGF family of growth factors and is a ligand for the endothelial-specific receptor tyrosine kinases VEGFR-3 and VEGFR-2. The VEGF homology domain spans only about one-third of the cysteine-rich VEGF-C precursor. Here we have analysed the role of post-translational processing in VEGF-C secretion and function, as well as the structure of the mature VEGF-C. The stepwise proteolytic processing of VEGF-C generated several VEGF-C forms with increased activity towards VEGFR-3, but only the fully processed VEGF-C could activate VEGFR-2. Recombinant 'mature' VEGF-C made in yeast bound VEGFR-3 (K[D] = 135 pM) and VEGFR-2 (K[D] = 410 pM) and activated these receptors. Like VEGF, mature VEGF-C increased vascular permeability, as well as the migration and proliferation of endothelial cells. Unlike other members of the PDGF/VEGF family, mature VEGF-C formed mostly non-covalent homodimers. These data implicate proteolytic processing as a regulator of VEGF-C activity, and reveal novel structure-function relationships in the PDGF/VEGF family.
Abstract. Cultured bovine capillary endothelial (BCE) cells were found to synthesize and secrete high molecular mass heparan sulfate proteoglycans and glycosaminoglycans, which bound basic fibroblast growth factor (bFGF). The secreted heparan sulfate molecules were purified by DEAE cellulose chromatography, followed by Sepharose 4B chromatography and affinity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.