The rheological characterization of glass-forming liquids is challenging due to their extreme temperature dependence and high stiffness at low temperatures. This study focuses on the special precautions that need to be taken to accommodate high sample stiffness and torsional instrument compliance in shear rheological experiments. The measurement errors due to the instrument compliance can be avoided by employing small-diameter parallel plate (SDPP) rheometry in combination of numerical instrument compliance corrections.Measurements of that type demonstrate that accurate and reliable rheological data can be obtained by SDPP rheometry despite unusually small diameter-to-gap (d/h) ratios. Specimen preparation for SDPP requires special attention, but then experiments show excellent repeatability. Advantages and some current applications of SDPP rheometry are briefly reviewed. SDPP rheometry is seen as a simple and versatile way to measure rheological properties of glass-forming liquids especially near their glass transition temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.