Cefixime, a third-generation semi-synthetic cephalosporin antibiotic was used as a copper corrosion inhibitor in 1M HNO 3 solution. The study was conducted through the weight loss technique at 298 -318 K and theoretical studies based on quantum chemistry. The studied drug inhibited the corrosion of copper in 1M HNO 3 over the cefixime concentration range (0.02 -2 mM). The inhibition efficiency increased with an increase in the inhibitor concentration to reach 91.07% at 2 mM, but decreased with an increase in temperature. The thermodynamic functions related to the adsorption of cefixime on the copper surface and that of the metal dissolution were computed and analyzed. The results point out spontaneous adsorption, mainly through a physisorption mechanism following Langmuir adsorption isotherm model and an endothermic dissolution process. Quantum chemical calculations were also performed at B3LYP level with 6-31G (d, p) basis set and lead to molecular descriptors such as E HOMO (energy of the highest occupied molecular orbital), E LUMO (energy of the lowest unoccupied molecular orbital), ΔE (energy gap) and μ (dipole moment). The global reactivity descriptors such as χ (electronegativity), χ (global hardness), S (global softness), and ω (electrophilicity index) were derived using Koopman's theorem and analyzed. The local reactivity parameters, including Fukui functions and dual descriptors were determined and discussed. Experimental and theoretical results were found to be in good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.