The selenium salt selenite (SeO3 2؊ ) is cytotoxic in low to moderate concentrations, with a remarkable specificity for cancer cells resistant to conventional chemotherapy. Our data show that selenium uptake and accumulation, rather than intracellular events, are crucial to the specific selenite cytotoxicity observed in resistant cancer cells. We show that selenium uptake depends on extracellular reduction, and that the extracellular environment is a key factor specific to selenite cytotoxicity. The extracellular reduction is mediated by cysteine, and the efficacy is determined by the uptake of cystine by the x c ؊ antiporter and secretion of cysteine by multidrug resistance proteins, both of which are frequently overexpressed by resistant cancer cells. This mechanism provides molecular evidence for the existence of an inverse relationship between resistance to conventional chemotherapy and sensitivity to selenite cytotoxicity, and highlights the great therapeutic potential in treating multidrug-resistant cancer.2Ϫ ) efficiently inhibits the growth of malignant cells and studies suggest an inverse relationship between resistance to cytotoxic drugs and sensitivity to selenite (SeO 3 2Ϫ ) (1, 2). A major mechanism of selenite cytotoxicity is thought to be the generation of oxidative stress through intracellular redox cycling of the selenium metabolite selenide with oxygen and cellular thiols, producing nonstoichiometric amounts of superoxide and cellular disulfides. The induction of oxidative stress and consequent apoptosis has been demonstrated in numerous cancer cell lines (2-8), but why this occurs only in malignant cells at easily achievable selenium plasma concentrations remains unclear.With the assumption that the mechanistic explanation is intracellular, studies on differences in cellular uptake have been neglected. Already in the 1960s, selenite (SeO 3 2Ϫ ) was being used experimentally as a tumor-localizing agent. Neoplasms could be detected in brain and thorax in human subjects through i.v. administration of radioactive selenite ( 75 Se) (9). Although at that time the cancer-specific cytotoxic effects of selenite were unknown, and low doses were used (approximately in the nM range in blood) (9), early findings clearly demonstrated that cancer cells enrich selenium in vivo. These findings, combined with current knowledge of selenite's toxic effects on malignant cells, raise the possibility of a cancer-specific high-affinity selenium uptake mechanism that might explain cancer-specific selenite cytotoxicity at therapeutic selenite concentrations (M range).In yeast, millimolar tolerance to selenite can be reduced to the micromolar range by the presence of excessive thiols in the growth medium through high-affinity uptake of a more reduced form of selenite, possibly selenide (10). High-affinity uptake of selenium through the addition of extracellular thiols also has been demonstrated in a keratinocyte model (11) using nanomolar concentrations of selenite. Selenium uptake was prevented in keratinocytes by the ...
Hereditary myopathy with early respiratory failure and extensive myofibrillar lesions has been described in sporadic and familial cases and linked to various chromosomal regions. The mutated gene is unknown in most cases. We studied eight individuals, from three apparently unrelated families, with clinical and pathological features of hereditary myopathy with early respiratory failure. The investigations included clinical examination, muscle histopathology and genetic analysis by whole exome sequencing and single nucleotide polymorphism arrays. All patients had adult onset muscle weakness in the pelvic girdle, neck flexors, respiratory and trunk muscles, and the majority had prominent calf hypertrophy. Examination of pulmonary function showed decreased vital capacity. No signs of cardiac muscle involvement were found. Muscle histopathological features included marked muscle fibre size variation, fibre splitting, numerous internal nuclei and fatty infiltration. Frequent groups of fibres showed eosinophilic inclusions and deposits. At the ultrastructural level, there were extensive myofibrillar lesions with marked Z-disc alterations. Whole exome sequencing in four individuals from one family revealed a missense mutation, g.274375T>C; p.Cys30071Arg, in the titin gene (TTN). The mutation, which changes a highly conserved residue in the myosin binding A-band titin, was demonstrated to segregate with the disease in all three families. High density single nucleotide polymorphism arrays covering the entire genome demonstrated sharing of a 6.99 Mb haplotype, located in chromosome region 2q31 including TTN, indicating common ancestry. Our results demonstrate a novel and the first disease-causing mutation in A-band titin associated with hereditary myopathy with early respiratory failure. The typical histopathological features with prominent myofibrillar lesions and inclusions in muscle and respiratory failure early in the clinical course should be incentives for analysis of TTN mutations.
Small hydrophobic ligands identifying intracellular protein deposits are of great interest, as protein inclusion bodies are the pathological hallmark of several degenerative diseases. Here we report that fluorescent amyloid ligands, termed luminescent conjugated oligothiophenes (LCOs), rapidly and with high sensitivity detect protein inclusion bodies in skeletal muscle tissue from patients with sporadic inclusion body myositis (s-IBM). LCOs having a conjugated backbone of at least five thiophene units emitted strong fluorescence upon binding, and showed co-localization with proteins reported to accumulate in s-IBM protein inclusion bodies. Compared with conventional amyloid ligands, LCOs identified a larger fraction of immunopositive inclusion bodies. When the conjugated thiophene backbone was extended with terminal carboxyl groups, the LCO revealed striking spectral differences between distinct protein inclusion bodies. We conclude that 1) LCOs are sensitive, rapid and powerful tools for identifying protein inclusion bodies and 2) LCOs identify a wider range of protein inclusion bodies than conventional amyloid ligands.
Background & AimsAdenocarcinomas of the pancreatobiliary system are currently classified by their primary anatomical location. In particular, the pathological diagnosis of intrahepatic cholangiocarcinoma is still considered as a diagnosis of exclusion of metastatic adenocarcinoma. Periampullary cancers have been previously classified according to the histological type of differentiation (pancreatobiliary, intestinal), but overlapping morphological features hinder their differential diagnosis. We performed an integrative immunohistochemical analysis of pancreato-biliary tumors to improve their diagnosis and prediction of outcome.MethodsThis was a retrospective observational cohort study on patients with adenocarcinoma of the pancreatobiliary system who underwent diagnostic core needle biopsy or surgical resection at a tertiary referral center. 409 tumor samples were analyzed with up to 27 conventional antibodies used in diagnostic pathology. Immunohistochemical scoring system was the percentage of stained tumor cells. Bioinformatic analysis, internal validation, and survival analysis were performed.ResultsHierarchical clustering and differential expression analysis identified three immunohistochemical tumor types (extrahepatic pancreatobiliary, intestinal, and intrahepatic cholangiocarcinoma) and the discriminant markers between them. Among patients who underwent surgical resection of their primary tumor with curative intent, the intestinal type showed an adjusted hazard ratio of 0.19 for overall survival (95% confidence interval 0.05–0.72; p value = 0.014) compared to the extrahepatic pancreatobiliary type.ConclusionsIntegrative immunohistochemical classification of adenocarcinomas of the pancreatobiliary system results in a characteristic immunohistochemical profile for intrahepatic cholangiocarcinoma and intestinal type adenocarcinoma, which helps in distinguishing them from metastatic and pancreatobiliary type adenocarcinoma, respectively. A diagnostic immunohistochemical panel and additional extended panels of discriminant markers are proposed as guidance for their pathological diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.